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Lev Davidovich Landau

Born January 22, 1908

Baku, Russian Empire

Died April 1, 1968 (aged 60)

Moscow, Soviet Union

Fields Physics

Institutions Kharkiv University

Kharkiv Polytechnical Institute

Institute for Physical Problems

Alma mater Saint Petersburg State University

Doctoral students
Alexei Alexeyevich Abrikosov 

Isaak Markovich Khalatnikov

Known for Superfluidity, superconductivity

Notable awards
Nobel Prize in Physics (1962) 

Lev Landau

From Wikipedia, the free encyclopedia

Lev Davidovich Landau (Russian language: !"#$ 

%&$'#()$'* !&+(&#,) (January 22, 1908 – April 1,

1968) was a prominent Soviet physicist who made

fundamental contributions to many areas of

theoretical physics. His accomplishments include

the co-discovery of the density matrix method in

quantum mechanics, the quantum mechanical

theory of diamagnetism, the theory of

superfluidity, the theory of second order phase

transitions, the Ginzburg-Landau theory of

superconductivity, the explanation of Landau

damping in plasma physics, the Landau pole in

quantum electrodynamics, and the two-component

theory of neutrinos. He received the 1962 Nobel

Prize in Physics for his development of a

mathematical theory of superfluidity that accounts

for the properties of liquid helium II at a

temperature below 2.17 K (!270.98 °C).

Contents

1 Biography
1.1 Early years
1.2 The Landau school
1.3 Great Purge
1.4 Death and legacy

2 Landau's list
3 Works
4 Some books about Landau
5 See also
6 References
7 Further reading

Biography

Early years

Landau was born January 22, 1908 into a Jewish family in Baku, Azerbaijan. Recognized very early as a

child prodigy in mathematics, Landau was quoted as saying in later life that he scarcely remembered a time

when he was not familiar with calculus. Landau graduated at 13 from gymnasium. His parents regarded
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Landau’s Impact
• International Influence throughout Atomic, Nuclear, 

Electroweak, High Energy Physics

• Fundamentals of Quantum Field Theory

• CP Invariance, Neutrino Physics

• Renormalization theory, Landau Singularity

• Remarkable Students, Legacy of Russian Schools

•                             
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Physical Intuition!
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Searching for the Ultimate Constituents

Electrons, Quarks, and Gluons may be truly pointlike!

α

1fm = 10−15m = 10−13cm

1 GeV resolves 10−16 m = 0.1 fm

1 MeV resolves 10−13 m = 100 fm

1 KeV resolves 10−10 m = 1 Angstrom

1 eV resolves 10−7 m = 1000 Angstrom

1 TeV resolves 10−19 m = 0.0001 fm

α
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1 TeV resolves 10−19 m = 0.0001 fm

α
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The World of Quarks and Gluons:

• Quarks and Gluons: Fundamental constituents              
of hadrons and nuclei

• Remarkable and novel properties                                    
of Quantum Chromodynamics (QCD)

• New Insights from higher space-time dimensions: 
Holography: AdS/CFT

5
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QCD Lagrangian

Yang-Mills Gauge Principle: 
Invariance under Color 

Rotation and Phase Change 
at Every Point of Space and 

Time 

Dimensionless Coupling
Renormalizable 

Asymptotic Freedom
Color Confinement

6



     QCD
 
        Only quarks and gluons involve basic vertices: Quark-gluon vertex

More exactly

Gluon vertices

Fundamental Couplings 

colored particles couple to gluons

Similar to QED
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limNC → 0 at fixed α = CFαs, n" = nF/CF

e+e− → p# p

Huet, sjb

QCD Lagrangian

Analytic limit of QCD: Abelian Gauge Theory

[CF =
N2

C−1
2NC

]

FH(Q2)× [Q2]nH−1 ∼ constant

[Q2]nH−1FH(Q2) ∼ constant

FH(Q2) ∼ [ 1
Q2]

nH−1

fd(Q
2) ≡ Fd(Q

2)

Fp(
Q2
4 )Fp(

Q2
4 )

fd(Q
2) ∼ Fπ(Q2)

QCD                  QED
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QED:   Underlies Atomic Physics, Molecular Physics, 
Chemistry, Electromagnetic Interactions  ...

QCD:   Underlies Hadron Physics, Nuclear Physics, 

• Feynman diagrams and perturbation theory, evolution 
equations

• Bethe Salpeter and Dyson-Schwinger Equations 

• Lattice Gauge Theory 

• Discretized Light-Front Quantization

• AdS/CFT !

Theoretical Tools:
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Given the elementary gauge theory interactions, all 
fundamental processes described in principle!

Example from QED:  

Electron gyromagnetic moment - ratio of spin precession 
frequency to Larmor frequency in a magnetic field 

1
2ge = 1.001 159 652 201(30)

1
2ge = 1.001 159 652 193(10)

ge accurate to 11 figures!

QED prediction  (Kinoshita, et al.)

Measurement (Dehmelt, et al.)

Dirac:  ge ≡ 2

1
2ge = 1.001 159 652 201(30)

1
2ge = 1.001 159 652 193(10)

ge accurate to 11 figures!

1
2
ge = 1.001 159 652 180 85 [0.76 ppt]

Measurement (Gabrielse, et al.)
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with hadronic and weak contributions added, and assuming
no electron substructure. Impressive calculations, summa-
rized in [10], give exact C2, C4, and C6, a numerical value
and uncertainty for C8, and a small a!".

A companion Letter [10] announces a new determina-
tion of #, from the measured g and Eq. (6),
 

#!1 " 137:035 999 710 #90$ #33$ %0:66 ppb&%0:24 ppb&;
" 137:035 999 710 #96$ %0:70 ppb&: (7)

The first line gives the experimental uncertainty first and
the QED uncertainty second, including an estimated con-
tribution from a yet uncalculated C10 [10]. The total
0.70 ppb uncertainty is 10 times smaller than for the next
most precise methods [Fig. 1(b)]—determining # from
measured mass ratios, optical frequencies, together with
either Rb [11] or Cs [12] recoil velocities.

The most stringent test of QED (one of the most de-
manding comparisons of any calculation and experiment)
continues to come from comparing measured and calcu-
lated g, the latter using an independently measured # as an
input. The new g, compared to Eq. (6) with ##Cs$ or
##Rb$, gives a difference j$g=2j< 15' 10!12. Details
and a discussion are in [10]. The small uncertainties in
g=2 will allow a 10 times more demanding test if ever the
large uncertainties in the independent # values can be
reduced. The prototype of modern physics theories is
thus tested far more stringently than its inventors ever
envisioned [20], with better tests to come.

The same comparison of theory and experiment probes
the internal structure of the electron [1,10]—limiting the
electron to constituents with a mass m( >m=

!!!!!!!!!!!
$g=2

p
"

130 GeV=c2, corresponding to an electron radius R< 1'
10!18 m. If this test was limited only by our experimental
uncertainty in g, then we could set a limit m( > 600 GeV.
These high energy limits seem somewhat remarkable for
an experiment carried out at 100 mK.

Are experimental improvements possible? A reduction
of the 0.76 ppt uncertainty of the measured electron g
seems likely, given that this fully-quantum measurement
has only recently been realized. Time is needed to study the
line shapes and cavity shifts as a function of magnetic field,
to improve cooling methods, and to make the magnetic
field more stable.

In conclusion, greatly improved measurements of the
electron magnetic moment and the fine structure constant,
and a sensitive probe for internal electron structure, come
from resolving the lowest cyclotron and spin levels of a
one-electron quantum cyclotron. A self-excited oscillation
of the electron reveals one-quantum transitions. A cylin-
drical Penning trap cavity narrows resonance lines by
inhibiting spontaneous emission. Electromagnetic modes
of this understandable cavity geometry, probed with syn-
chronized electrons, shift g in a measurable way that can be

corrected. The new g=2 differs from a long accepted value
by 1.7 standard deviations, and its fractional uncertainty of
7:6' 10!13 is nearly 6 times smaller. The new # has an
uncertainty 10 times smaller than that from any other
method to determine the fine structure constant.

Measurement details and a preliminary analysis are in a
thesis [21]. S. Peil, D. Enzer, and K. Abdullah contributed
to earlier versions of the apparatus, and J. MacArthur gave
electronics support. Useful comments came from G.
Feldman, D. Hertzog, T. Kinoshita, P. Mohr, L. Roberts,
B. Taylor, and R. S. Van Dyck, Jr. The NSF AMO program
provided long-term funding.

*Present address: University of Chicago, Chicago, IL
60637, USA.

†Present address: Oak Ridge National Laboratory, Oak
Ridge, TN 37831, USA.

‡Electronic address: gabrielse@physics.harvard.edu
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frequency) gives resonance line shapes for !!a and !fc
[Fig. 3(c) and 3(d)]. For weak drives that avoid saturation,
the line shape comes from thermal axial motion within the
magnetic bottle [16]. The small coherent axial oscillation
at !!a has no noticeable effect. However, otherwise unde-
tectable ppb fluctuations in B, on time scales shorter than
an hour, would smear the expected line shapes.

At the first of two magnetic fields used, !!c !
146:8 GHz. A 1.4 s damping time gives good line shape
statistics [e.g., Fig. 3(c) and 3(d)] with 66 measurement
cycles per night on average. Three methods to extract !!a
and !fc from line shapes give the same g within 0.6 ppt—
our ‘‘line shape model’’ uncertainty in Table I. The first is
maximum likelihood fitting of the Brownian motion line
shape. The second method fits a convolution of this line
shape and a Gaussian resolution function, about 1 ppb
wide. The third method weights each drive frequency by
the number of quantum jumps it produces, and uses the
weighted average frequencies in Eq. (4) for !!a and !fc.
(Understood shifts proportional to axial temperature, com-
mon to both frequencies, do not increase the uncertainty.)
This weighted average method should account for
Brownian axial motion and additional fluctuations of B.
At our second field, where !!c ! 149:0 GHz, the 6.7 s
damping time allows only 29 measurement cycles per night
on average. A long wait is needed to make certain that a
spin flip has not occurred. The weighted averages method
is used for the lower statistics line shapes.

The !!z in Eq. (4) pertains while !fc and !!a are driven—
not what is measured when the SEO amplifier is on and
increasing the axial temperature from 0.3 to 5 K. Limits on
axial heating shifts come from the width of a notch in the
noise spectrum resonance for the resonant circuit [15]
(Table I), measured less well for !!c ! 146:8 GHz.

Although the g value from Eq. (4) is independent of B,
field stability is still an important challenge, since !!a and
!fc are measured at different times. After the superconduct-
ing solenoid settles for several months, field drifts below
10"9=night have been observed. This requires regulating
five He and N2 pressures in the solenoid and experiment
cryostats, and the surrounding air temperature to 0.3 K. We
correct for drifts up to 10"9=hr using a cyclotron resonance
edge measured once in 3 h.

The trap cavity modifies the density of states of radiation
modes of free space, though not enough to significantly
affect QED calculations of g [17]. However, cavity radia-
tion modes do shift !fc [18]—still a significant uncertainty,
as in the past [4,18]. We use a synchronized-trapped-
electrons method [19] to observe quantitatively under-
standable radiation modes [Fig. 4(a)] of a good cylindrical
Penning trap cavity [9]. Our best measurement comes from
choosing !!c ! 149:0 GHz, maximally detuned from
modes that couple to a centered electron’s cyclotron mo-
tion. A measurement at !!c ! 146:8 GHz, uncomfortably
close to TE127, checks how well cavity shifts are under-
stood. Until the cavity spectrum and its frequency calibra-
tion is more carefully studied, TE127 and TM143 are
assumed only to lie within the shaded bands. A renormal-
ized calculation (Eq. 8.19 of [15]) gives a range of possible
cavity shifts of the measured g [Fig. 4(b)] that is insensitive
to mode quality factors for Q> 500. Assigned shifts and
uncertainties are indicated in Fig. 4(b) and in Table I. The
first direct observation of a cavity shift of g, the difference
between our two measurements [Fig. 4(c)], lies within the
predicted range.

A new value for the electron magnetic moment,

 g=2 # 1:001 159 652 180 85 $76% &0:76 ppt'; (5)

comes from the measurement at !!c ! 149:0 GHz. (A
weighted average with the more uncertain measurement
at !!c ! 146:8 GHz is larger by 0.06 ppt, with a decreased
uncertainty of 0.75 ppt.) The standard deviation, about
6 times smaller than from any previous measurement,
arises mostly from the line shape model and cavity shifts
(Table I). Varying the !!a and !fc drive power causes no
detectable shifts of g.

QED provides an asymptotic series relating g and ",
 

g
2
# 1( C2

!"
#

"
( C4

!"
#

"
2
( C6

!"
#

"
3
( C8

!"
#

"
4
( . . .

( a$% ( ahadronic ( aweak; (6)

TABLE I. Applied corrections and uncertainties for g in ppt.

Source !!c # 146:8 GHz 149:0 GHz

!!z shift 0.2 (0.3) 0.00 (0.02)
Anomaly power 0.0 (0.4) 0.00 (0.14)
Cyclotron power 0.0 (0.3) 0.00 (0.12)
Cavity shift 12.8 (5.1) 0.06 (0.39)
Line shape model 0.0 (0.6) 0.00 (0.60)
Statistics 0.0 (0.2) 0.00 (0.17)

Total 13.0 (5.2) 0.06 (0.76)

cyclotron frequency (GHz)
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modes that do not couple
to cyclotron motion of one electron

range of cavity shifts for the range of frequency
assignments for the TE127 and TM143 modes
for mode Q values greater than 500

assigned cavity shifts

(a)

(b) (c)

FIG. 4. Modes of the trap cavity observed with synchronized
electrons (a). Resulting assigned cavity shifts (points and
Table I) (b). First measured cavity shift of g (point) is the shift
between measurements at 146.8 and 149.0 GHz (c). Gray bands
are the assumed calibration and identification uncertainties for
mode frequencies in (a), and the resulting range of predicted
cavity shifts in (b) and (c).
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with hadronic and weak contributions added, and assuming
no electron substructure. Impressive calculations, summa-
rized in [10], give exact C2, C4, and C6, a numerical value
and uncertainty for C8, and a small a!".

A companion Letter [10] announces a new determina-
tion of #, from the measured g and Eq. (6),
 

#!1 " 137:035 999 710 #90$ #33$ %0:66 ppb&%0:24 ppb&;
" 137:035 999 710 #96$ %0:70 ppb&: (7)

The first line gives the experimental uncertainty first and
the QED uncertainty second, including an estimated con-
tribution from a yet uncalculated C10 [10]. The total
0.70 ppb uncertainty is 10 times smaller than for the next
most precise methods [Fig. 1(b)]—determining # from
measured mass ratios, optical frequencies, together with
either Rb [11] or Cs [12] recoil velocities.

The most stringent test of QED (one of the most de-
manding comparisons of any calculation and experiment)
continues to come from comparing measured and calcu-
lated g, the latter using an independently measured # as an
input. The new g, compared to Eq. (6) with ##Cs$ or
##Rb$, gives a difference j$g=2j< 15' 10!12. Details
and a discussion are in [10]. The small uncertainties in
g=2 will allow a 10 times more demanding test if ever the
large uncertainties in the independent # values can be
reduced. The prototype of modern physics theories is
thus tested far more stringently than its inventors ever
envisioned [20], with better tests to come.

The same comparison of theory and experiment probes
the internal structure of the electron [1,10]—limiting the
electron to constituents with a mass m( >m=

!!!!!!!!!!!
$g=2

p
"

130 GeV=c2, corresponding to an electron radius R< 1'
10!18 m. If this test was limited only by our experimental
uncertainty in g, then we could set a limit m( > 600 GeV.
These high energy limits seem somewhat remarkable for
an experiment carried out at 100 mK.

Are experimental improvements possible? A reduction
of the 0.76 ppt uncertainty of the measured electron g
seems likely, given that this fully-quantum measurement
has only recently been realized. Time is needed to study the
line shapes and cavity shifts as a function of magnetic field,
to improve cooling methods, and to make the magnetic
field more stable.

In conclusion, greatly improved measurements of the
electron magnetic moment and the fine structure constant,
and a sensitive probe for internal electron structure, come
from resolving the lowest cyclotron and spin levels of a
one-electron quantum cyclotron. A self-excited oscillation
of the electron reveals one-quantum transitions. A cylin-
drical Penning trap cavity narrows resonance lines by
inhibiting spontaneous emission. Electromagnetic modes
of this understandable cavity geometry, probed with syn-
chronized electrons, shift g in a measurable way that can be

corrected. The new g=2 differs from a long accepted value
by 1.7 standard deviations, and its fractional uncertainty of
7:6' 10!13 is nearly 6 times smaller. The new # has an
uncertainty 10 times smaller than that from any other
method to determine the fine structure constant.

Measurement details and a preliminary analysis are in a
thesis [21]. S. Peil, D. Enzer, and K. Abdullah contributed
to earlier versions of the apparatus, and J. MacArthur gave
electronics support. Useful comments came from G.
Feldman, D. Hertzog, T. Kinoshita, P. Mohr, L. Roberts,
B. Taylor, and R. S. Van Dyck, Jr. The NSF AMO program
provided long-term funding.

*Present address: University of Chicago, Chicago, IL
60637, USA.

†Present address: Oak Ridge National Laboratory, Oak
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‡Electronic address: gabrielse@physics.harvard.edu
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Light-by-Light Scattering 
Contribution to C6

e

B
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In 1959 Landau and Bjorken developed, 
independently and simultaneously,

the analogy of Feynman graphs 
to electrical circuit theory 

and  the use of Kirchhoff's laws 
to analyze their singularity structure 

Light-by-light contribution to 
the muon and electron anomalous magnetic moments

Aldins, Dufner, Kinoshita, sjb
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Electron-Electron Scattering in QED

t u

This is very important!

This is very important!

This is very important!

This is very important!

α(t) = α(0)
1−Π(t)

α(t) = α(t0)
1−Π(t,t0)

Gell Mann-Low Effective Charge
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α(t) = α(t0)
1−Π(t,t0)

t = −Q2 < 0

Π(Q2) =

α(0)
3π [53−

4m2

Q2 −(1−2m2

Q2 )
√

1 + 4m2

Q2 log
1+

√
1+4m2

Q2

|1−
√

1+4m2

Q2 |
]

Π(Q2) = α(0)
15π

Q2

m2

α(t) = α(t0)
1−Π(t,t0)

t = −Q2 < 0

Π(Q2) =

α(0)
3π [53−

4m2

Q2 −(1−2m2

Q2 )
√

1 + 4m2

Q2 log
1+

√
1+4m2

Q2

|1−
√

1+4m2

Q2 |
]

Π(Q2) = α(0)
15π

Q2

m2

α(t) = α(t0)
1−Π(t,t0)

t = −Q2 < 0

Π(Q2) =

α(0)
3π [53−

4m2

Q2 −(1−2m2

Q2 )
√

1 + 4m2

Q2 log
1+

√
1+4m2

Q2

|1−
√

1+4m2

Q2 |
]

Π(Q2) = α(0)
15π

Q2

m2

QED One-Loop Vacuum Polarization

α(t) = α(t0)
1−Π(t,t0)

t = −Q2 < 0

Π(Q2) =

α(0)
3π [53−

4m2

Q2 −(1−2m2

Q2 )
√

1 + 4m2

Q2 log
1+

√
1+4m2

Q2

|1−
√

1+4m2

Q2 |
]

Π(Q2) = α(0)
15π

Q2

m2 Q2 << 4M2

Π(Q2) = α(0) over3π logQ2

m2

Q2 >> 4M2

β=dα
d logQ2=1

3n$
.

Serber-Uehling

Q2 << 4M2

Π(Q2) = α(0) over3π logQ2

m2

Q2 >> 4M2

β=dα
d logQ2=1

3n$
.

Q2 << 4M2

Π(Q2) = α(0)
3π

logQ2

m2

Q2 >> 4M2

β = dα
d logQ2 = 1

3n$.

Landau Pole

Q2 << 4M2

Π(Q2) = α(0)
3π

logQ2

m2

Q2 >> 4M2

β =
d( α

4π)
d logQ2 = 4

3(
α
4π)2n$ > 0

This is very important!

This is very important!

This is very important!

This is very important!

+

+ · · ·+

!+

!−

α(t) = α(0)
1−Π(t)

α(t) = α(t0)
1−Π(t,t0)

t = −Q2 < 0

Π(Q2) =

α(0)
3π [53−

4m2

Q2 −(1−2m2

Q2 )
√

1 + 4m2

Q2 log
1+

√
1+4m2

Q2

|1−
√

1+4m2

Q2 |
]

(t spacelike)

Analytically continue to timelike t: Complex

14
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This is very important!

This is very important!

This is very important!

This is very important!

α(t) = α(0)
1−Π(t)

α(t) = α(t0)
1−Π(t,t0)

This is very important!

This is very important!

This is very important!

This is very important!

α(t) = α(0)
1−Π(t)

α(t) = α(t0)
1−Π(t,t0)

This is very important!

This is very important!

This is very important!

This is very important!

+

α(t) = α(0)
1−Π(t)

α(t) = α(t0)
1−Π(t,t0)

This is very important!

This is very important!

This is very important!

This is very important!

+

+ · · ·+

α(t) = α(0)
1−Π(t)

α(t) = α(t0)
1−Π(t,t0)

All-orders lepton loop corrections to dressed photon propagator

This is very important!

This is very important!

This is very important!

This is very important!

+

α(t) = α(0)
1−Π(t)

α(t) = α(t0)
1−Π(t,t0)

!−

α(t) = α(0)
1−Π(t)

α(t) = α(t0)
1−Π(t,t0)

Π(t, t0) = Π(t)−Π(t0)
1−Π(t0)

t = −Q2 < 0

Π(Q2) =

QED Effective Charge
!−

< 0|Gµν(x)Gστ(0)|0 >

Gµν = ∂µAν − ∂νAµ + ig[Aµ, Aν]

Π

α(t) = α(0)
1−Π(t)

α(t) = α(t0)
1−Π(t,t0)

!−

< 0|Gµν(x)Gστ(0)|0 >

Gµν = ∂µAν − ∂νAµ + ig[Aµ, Aν]

Π

α(t) = α(0)
1−Π(t)

α(t) = α(t0)
1−Π(t,t0)

!−

< 0|Gµν(x)Gστ(0)|0 >

Gµν = ∂µAν − ∂νAµ + ig[Aµ, Aν]

Π

α(t) = α(0)
1−Π(t)

α(t) = α(t0)
1−Π(t,t0)

Initial scale  t0  is arbitrary -- Variation gives RGE Equations
Physical renormalization scale  t  never arbitrary  

15
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1

1

!
"

1
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!
"

1

3

!
"

18

QED

QCD

Landau Pole

1
αQED(Q)

αQED(Q)→∞

QLandau
me

= e
3π

2α(0)N#

1
α(0) = 137.035999084(51)[0.37ppb]

1
α(QLandau) → 0

06/14/2008 09:46 PMLandau Congress

Page 1 of 2http://landaucongress.itp.ac.ru/

RUS
Russian Academy of Sciences

Department for Physical Sciences
Landau Institute for Theoretical

Physics

Landau
Congress

100 years of Lev
Landau

calendar of events
on the occasion of

the centenary

January 22-23, 2008

Scientific session
of the Physics Department

of the Russian
Academy of Sciences

June 19-20, 2008

Memorial meeting
Central House of

Scientists, RAS

Open to the
public. To participate in the
meeting, please, register online

or send your
name by e-mail to
session100@itp.ac.ru

June 22-26, 2008

L.D.Landau
Memorial Conference

"Advances in
Theoretical Physics"

April-June 2008

Anniversary
Landau olympiad in
theoretical physics

for undergraduate

QLandau
me

= e
3π

2α(0)N#

 PQED:   

αQED(Q) Singular at

16
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1

1

!
"

1

2

!
"

1

3

!
"

18

QED

QCD

M. Binger, sjb

Landau Pole

Coupling UnificationSupersymmetric
SU(5)

Landau pole provides a strong argument for GUT

17
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06/15/2008 01:01 AM2004NobelFig4.gif 465!190 pixels

Page 1 of 1http://www.physlink.com/news/Images/2004NobelFig4.gif

Coupling Unification in Nonanalytic ms Scheme

18
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1

1

!
"

1

2

!
"

1

3

!
"

18

Asymptotic unification of 
strong, electromagnetic, and 

weak forces in analytic 
pinch scheme

QED

QCD

Binger, sjb

Supersymmetric
SU(5)

Analytic Coupling Unification

19
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Use Physical Scheme to 
Characterize QCD Coupling

• Use Physical Observable to define QCD coupling

• No Renormalization Scale Ambiguity

• Analytic: Smooth behavior as one crosses new 
quark threshold

• New perspective on grand unification
Binger, Sjb 

Lesson from QED:

20
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1

1

!
"

1

2

!
"

1

3

!
"

18

Asymptotic unification of 
strong, electromagnetic, and 

weak forces in analytic 
pinch scheme

QED

QCD

Binger, sjb

Supersymmetric
SU(5)

Analytic Coupling Unification

21
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Relate Observables to Each Other
• Eliminate intermediate scheme

• No scale ambiguity 

• Transitive!

• Commensurate Scale Relations

• Example: Generalized Crewther Relation

Lesson from QED:

22
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 Eliminate MSbar, 
Find Amazing Simplification

23
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Geometric Series in Conformal QCD

Generalized Crewther Relation

Lu, Kataev, Gabadadze, Sjb

24
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[1 + αR(s∗)
π ][1− αg1(q

2)
π ] = 1

√
s∗ $ 0.52Q

[1 + αR(s∗)
π ][1− αg1(q

2)
π ] = 1

√
s∗ $ 0.52Q

Generalized Crewther Relation

Conformal relation true to all orders in 
perturbation theory

No radiative corrections to axial anomaly
Nonconformal terms set relative scales (BLM)

Analytic matching at quark thresholds
No renormalization scale ambiguity!

Lu, Kataev, Gabadadze, Sjb

25
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Γp−n
bj (Q2) ≡ gA

6 [1− α
g1
s (Q2)

π ]

Gaussian

k−6.5
T

dσ
dkT

kT (GeV)

ζ ↔ z

M =
∫
ΠdxidyiφF (xi, Q̃)×TH(xi, yi, Q̃)×φI(yi, Q̃)

Deur, Korsch, et al:  Effective Charge from Bjorken Sum Rule

Q (GeV)

!
s(

Q
)/
"

!
s,g1

/" world data

!
s,#

/" OPAL

pQCD evol. eq.

JLab PLB 650 4 244

JLab CLAS

!
s,F3

/"

GDH limit

0.06

0.07

0.08

0.09
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
1

10
-1

1

IR conformal window

Gribov, 
Cornwall, 

Shirkov
Siminov
Maxwell

No In#ared 
Slavery

No QCD 
Landau Pole

26
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∆E ∼ α(Zα)4 ln (Zα)2me

Infrared divergence of free electron propagator 
removed because of atomic binding 

Bethe Log
γ∗

e− p

Lamb Shift in Hydrogen

Maximum wavelength of bound electron 

λ <
1

Zαme

k > Zαme

Lesson from QED:

27
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gluon and quark propagators cutoff in IR 
because of  color confinement

g

q
b̄

k >
1

ΛQCD
λ < ΛQCD

maximum wavelength of bound quarks and gluons

Lesson from QED and Lamb Shift:

                         
B-Meson  

Shrock, sjb

28
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Use Dyson-Schwinger Equation for bound-state quark 
propagator: find confined condensate 

g

q
b̄

k >
1

ΛQCD
λ < ΛQCD

maximum wavelength of bound quarks and gluons

Lesson from QED and Lamb Shift:

                         
B-Meson  

< b̄|q̄q|b̄ > not < 0|q̄q|0 >

Shrock, sjb

29



AdS/QCD  Stan Brodsky 
 SLAC & IPPP

Landau Congress
Moscow,  June 20, 2008 30

Consequences of Maximum Quark 
and Gluon Wavelength

• Infrared integrations regulated by confinement

• Infrared fixed point of QCD coupling 

• Bound state quark and gluon Dyson-Schwinger 
Equation

• Quark and Gluon Condensates exist within 
hadrons

Lesson from QED and Lamb Shift:

αs(Q2) finite, β → 0 at small Q2

Shrock, sjb

30
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Determinations of  the vacuum Gluon Condensate

1.22

1.24

1.26

1.28

1.3

1.32

6 8 10 12 14 16 18 20

m, GeV

M
(1)

(Q2)=0n

0.036

0.012

0

-0.012

-0.024

-0.036

n

0.024 GeV4G
2

a)

1.24

1.26

1.28

1.3

1.32

-0.03 -0.02 -0.01 0 0.01 0.02 0.03

m, GeV

G2 , GeV4

b)

Figure 4: a): MS mass found from experimental moments Mn(Q2
n) for different n and Q2

n

determined by the equation M̄ (1)
n (Q2

n) = 0 for different values of the gluon condensate. The
shaded area shows the experimental error for

〈

αs

π G2
〉

= 0, for nonzero condensates only the
central lines are shown. b): m̄(m̄2) in GeV vs

〈

αs

π G2
〉

in GeV4 determined from n = 10 and
Q2 = 0.98 × 4m̄2. The αs is taken at the scale (41).

other experiments. In particular, as boundary condition in the RG equation (12) we put:

αs(m
2
τ ) = 0.330 ± 0.025 , mτ = 1.777 GeV (40)

found from hadronic τ -decay analysis [19] at the τ -mass in agreement with other data [20].
Another question is the choice of the scale µ2, at which αs should be taken. Since the

higher order perturbative corrections are not known, the moments Mn(Q2) will depend on
this scale. In the massless limit the most natural choice is µ2 = Q2. On the other hand
for massive quarks and Q2 = 0 the scale is usually taken µ2 ∼ m2. So we choose the
interpolation formula:

µ2 = Q2 + m̄2 (41)

At this scale αs is smaller than at µ2 = m̄2 for the price of larger M̄ (2)
n according to (39).

(Notice, that in the Tables in the Appendix as well as in the Fig 2 the ratio M̄ (2)/M̄ (0) is
given at the scale µ2 = m̄2.) Sometimes we will vary the coefficient before m̄2 (41) to test
the dependence of the results on the scale.

The sum rules for low order moments Mn(Q2), n ≤ 3 cannot be used because of large
contribution of high excited states and continuum as well as large α2

s corrections (see the
Tables in Appendix), especially at Q2 = 0. As the Fig 3 demonstrates, at n ≥ 4 the αs

correction to the gluon condensate is large at Q2 = 0. The 〈G3〉 condensate contribution is
also large (see below), which demonstrates, that the operator product expansion is divergent
here. For these reasons we will avoid using the sum rules at small Q2.

As the Fig 2 shows, the first correction to the moments M̄ (1)
n (Q2) vanishes along the

diagonal line, approximately parametrized by the equation Q2/(4m̄2) = n/5−1. The second-
order correction M̄ (2) and the correction to the condensate contribution M̄ (G,1) are also

12

< 0|αs
π G2|0 > [GeV4]

+0.009± 0.007 from charmonium sum rules
+0.006± 0.012 from τ decay.

Ioffe, Zyablyuk

Geshkenbein, Ioffe, Zyablyuk

Davier et al.−0.005± 0.003 from τ decay.

Consistent with zero 
vacuum condensate

31
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Quark and Gluon condensates reside 

within hadrons, not vacuum 
• Bound-State Dyson-Schwinger Equations 

• Domain becomes infinite at zero pion mass

• Finite volume phase transition

• Analogous to finite-size superconductor!

• Phase change observed at RHIC within a single-nucleus-
nucleus collisions-- quark gluon plasma!

• Implications for cosmological constant --                      
reduction by 55 orders of magnitude!

32

“Confined  QCD Condensates” Shrock, sjb

32
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STAR Time-Projection Chamber at  RHIC

Collide Gold Nuclei Together

Produce thousands of particles in each collision

Evidence of Quark-Gluon Plasma

33
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Away-side particles quenched in Au-Au Collisions

Gluon density 50 times more dense than cold nuclear matter !
Phase change within a single nucleus-nucleus collision

35
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Γp−n
bj (Q2) ≡ gA

6 [1− α
g1
s (Q2)

π ]

Gaussian

k−6.5
T

dσ
dkT

kT (GeV)

ζ ↔ z

M =
∫
ΠdxidyiφF (xi, Q̃)×TH(xi, yi, Q̃)×φI(yi, Q̃)

Deur, Korsch, et al:  Effective Charge from Bjorken Sum Rule

Q (GeV)
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GDH limit
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IR conformal window

Gribov, 
Cornwall, 

Shirkov

No In#ared 
Slavery

No QCD 
Landau Pole!
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Deur, Korsch, et al.

!
s/
"

pQCD evol. eq.

!
s,g1

/" JLab

Cornwall

Fit

GDH limit

Godfrey-Isgur

Bloch et al.

Burkert-Ioffe

Fischer et al.

Bhagwat et al.

Maris-Tandy

Q (GeV)

Lattice QCD

10
-1

1

10
-1

1

10
-1

1 10
-1

1

Fig: Infrared conformal window ( from Deur et al., arXiv:0803.4119 )

From String to Things, INT, Seattle, April 10, 2008 Page 8
37



 

• Dyson-Schwinger Analysis:    QCD Coupling has IR 
Fixed Point                                      

• Evidence from Lattice Gauge Theory 

• Define coupling from observable: indications of IR 
fixed point for QCD effective charges

• Confined gluons and quarks have maximum 
wavelength 

• Decoupling of QCD vacuum polarization at small Q2  

• Justifies application of AdS/CFT in strong-coupling 
conformal window

IR Conformal Window for QCD

Shrock, 
de Teramond, 

sjb

Π(Q2) → α
15π

Q2

m2

Q2 << 4m2

A

A′

σ = x− = ct− x3

x+ = ct + x3

x1

Π(Q2) → α
15π

Q2

m2

Q2 << 4m2

A

A′

σ = x− = ct− x3

x+ = ct + x3

x1

This is very important!

This is very important!

This is very important!

This is very important!

+

+ · · ·+

!+

!−

α(t) = α(0)
1−Π(t)

α(t) = α(t0)
1−Π(t,t0)

t = −Q2 < 0

Π(Q2) =

α(0)
3π [53−

4m2

Q2 −(1−2m2

Q2 )
√

1 + 4m2

Q2 log
1+

√
1+4m2

Q2

|1−
√

1+4m2

Q2 |
]

Serber-
Uehling

38
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Sea Quark Asymmetries
Intrinsic Strangeness, Charm, Bottom, 

Anapole

Quark and Gluon 
Orbital Angular Momentum
Large x quark distributions

Exclusive Processes
DVCS

Compton
Form Factors

Vector Meson and Resonant 
Electroproduction

Heavy Ion Collisions: QGP

Exotic States
Heavy Quark Baryons

ccd ccu bsd

39

AdS/CFT
DLCQ

Lattice GTH 
EFT

Nuclei
Hidden Color

Color Transparency
Shadowing Antishadowing

LFWFS, 
Distribution Amplitudes

GPDs
Structure Functions

QCD Lagrangian

Single-Spin Asymmetries
Initial- and 

Final-State Interactions
Transversity Astrophysics

Big Bang Nucleosynthesis

Proton Decay
neutron EDM

Diffractive DIS 

39
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• Although we know the QCD Lagrangian, we 
have only begun to understand its remarkable 
properties and features.

• Novel QCD Phenomena: hidden color, color 
transparency, strangeness asymmetry, intrinsic 
charm, anomalous heavy quark phenomena,  
anomalous spin effects, single-spin 
asymmetries, odderon, diffractive deep 
inelastic scattering, dangling gluons, 
shadowing, antishadowing, QGP, CGL, ...

40
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Truth is stranger than fiction, 
but it is because Fiction is 
obliged to stick to possibilities.        

                    —Mark Twain

41
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The World of Quarks and Gluons:

• Quarks and Gluons: Fundamental constituents              
of hadrons and nuclei

• Remarkable and novel properties                                    
of Quantum Chromodynamics (QCD)

• New Insights from higher space-time dimensions: 
Light-Front Holography: AdS/CFT

42
42
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Applications of AdS/CFT  to QCD 

in collaboration with Guy de Teramond

Changes in 
physical

length scale 
mapped to 

evolution in the 
5th dimension z 

43
43
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• Use AdS/CFT to provide an approximate, covariant, 
and analytic model of hadron structure with 
confinement at large distances, conformal behavior at 
short distances

• Analogous to the Schrodinger Theory for Atomic 
Physics

• AdS/QCD Light-Front Holography

• Hadronic Spectra and Light-Front 
Wavefunctions

• Hadronization at the Amplitude Level

Goal:

44
44
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Mµν,Pµ,D,Kµ,

the generators of S

Analytically continue

1
s−M2+iMΓ

q2 → q2 + iε→ q2 + iMΓ

Fix Γ from height

Γρ = 111 MeV

Conformal Theories are invariant under the 
Poincare and conformal transformations with  

the generators of SO(4,2)

SO(4,2)  has a mathematical representation on AdS5

49
49
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AdS/QCD G. F. de Téramond

Scale Transformations

• Isomorphism of SO(4, 2) of conformal QCD with the group of isometries of AdS space

SO(1, 5)

ds2 =
R2

z2
(ηµνdxµdxν − dz2),

xµ → λxµ, z → λz, maps scale transformations into the holographic coordinate z.

• AdS mode in z is the extension of the hadron wf into the fifth dimension.

• Different values of z correspond to different scales at which the hadron is examined.

x2 → λ2x2, z → λz.

x2 = xµxµ: invariant separation between quarks

• The AdS boundary at z → 0 correspond to theQ→∞, UV zero separation limit.

Caltech High Energy Seminar, Feb 6, 2006 Page 1150

invariant measure

50
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• QCD is not conformal;  however, it has 
manifestations of a scale-invariant theory: 
Bjorken scaling, dimensional counting for hard 
exclusive processes

• Conformal window in theIR:

• Use mathematical mapping of the conformal 
group  SO(4,2) to AdS5 space

Map AdS5 X S5 to conformal N=4 SUSY

51

αs(Q2) ! const at small Q2.

High Q2 from short distances

Fπ(Q2)

z2 = ζ2 = b2⊥x(1− x) = O( 1
Q2)

L

κ = 2ΛQCD

V = −βκ2ζ

Maldacena:

AdS/CFT: Anti-de Sitter Space / Conformal Field Theory

51
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Γp−n
bj (Q2) ≡ gA

6 [1− α
g1
s (Q2)

π ]

Gaussian

k−6.5
T

dσ
dkT

kT (GeV)

ζ ↔ z

M =
∫
ΠdxidyiφF (xi, Q̃)×TH(xi, yi, Q̃)×φI(yi, Q̃)

Deur, Korsch, et al:  Effective Charge from Bjorken Sum Rule

 
 

Q (GeV)
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Conformal QCD Window in Exclusive Processes

• Does αs develop an IR fixed point? Dyson–Schwinger Equation Alkofer, Fischer, LLanes-Estrada,

Deur . . .

• Recent lattice simulations: evidence that αs becomes constant and is not small in the infrared

Furui and Nakajima, hep-lat/0612009 (Green dashed curve: DSE).

• Phenomenological success of dimensional scaling laws for exclusive processes

dσ/dt ∼ 1/sn−2, n = nA + nB + nC + nD,

implies QCD is a strongly coupled conformal theory at moderate but not asymptotic energies

Farrar and sjb (1973); Matveev et al. (1973).

• Derivation of counting rules for gauge theories with mass gap dual to string theories in warped space

(hard behavior instead of soft behavior characteristic of strings) Polchinski and Strassler (2001).

• Example: Dirac proton form factor: F1(Q2) ∼
[
1/Q2

]n−1
, n = 3

Q4F p
1 (Q2) [GeV4]

5 10 15 20 25 30 35

0.2

0.4

0.6

0.8

1

Q2 [GeV2]

From: M. Diehl et al. Eur. Phys. J. C 39, 1 (2005).
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• Example: Dirac proton form factor: F1(Q2) ∼
[
1/Q2

]n−1
, n = 3

Q4F p
1 (Q2) [GeV4]

Q2 [GeV2]

From: M. Diehl et al. Eur. Phys. J. C 39, 1 (2005).
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Quark Counting Rules for 
Exclusive Processes

• Power-law fall-off of the scattering rate reflects 
degree of compositeness

• The more composite -- the faster the fall-off

• Power-law counts the number of quarks and gluon 
constituents

• Form factors: probability amplitude to stay intact

• FH(Q) ∝ 1
(Q2)n−1

Q momentum transfer

e+e− → pp̄

αs(Q) ∝ 1
lnQ

σ(e+e−→three jets)
σ(e+e−→two jets)

proportional to αs(s)

n = # elementary constituents

Brodsky and Farrar, Phys. Rev. Lett. 31 (1973) 1153 
Matveev et al., Lett. Nuovo Cimento, 7 (1973) 719 

54



 
AdS/QCD  Stan Brodsky 

 SLAC & IPPP
Landau Congress

Moscow,  June 20, 2008

Quark-Counting : dσ
dt (pp→ pp) = F (θCM)

s10

Data: n = 9.7± 0.5

powern = 4× 3− 2 = 10

√
s =

e+

q

q̄

dσ
dt (pp→ pp) = F (θCM)

s10

Data: n = 9.7± 0.5

n = 4× 3− 2 = 10

√
s =

e+

q

q̄

dσ
dt (pp→ pp) = F (θCM)

s10

Data: n = 9.7± 0.5

n = 4× 3− 2 = 10

√
s =

e+

q

q̄

Best Fit  

cm2

GeV2

Reflects
underlying 
conformal 
scale-free 

interactions

55

Angular distribution  -- quark interchange
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dσ
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s7
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s(GeV2)

dσ
dt (γp→MB) = F (θcm)

s7
Conformal Invariance:

56

dσ
dt (γp→ π+n)

56



 
AdS/QCD  Stan Brodsky 

 SLAC & IPPP
Landau Congress

Moscow,  June 20, 2008

FIG. 3. The scaled differential cross section s7 dσ
dt versus center-of-mass energy for the

γp → π+n at θcm = 90◦. The data from JLab E94-104 are shown as solid circles. The er-
ror bars for the new data and for the Anderson et al. data [1], include statistical and systematic
uncertainties. Other data sets [26,27] are shown with only statistical errors. The open squares
in the lower plot were averaged from data at θcm = 85◦ and 95◦ [28]. The solid line was obtained
from the recent partial-wave analysis of single-pion photoproduction data [29] up to Eγ=2 GeV,
while the dashed line from the MAID analysis [30] up to Eγ=1.25 GeV.

10

Test of PQCD Scaling

PQCD and AdS/CFT:

sntot−2dσdt (A+B→C+D) =
FA+B→C+D(θCM)

s7dσdt (γp→ π+n) = F(θCM)
ntot = 1+3+2+3= 9

s7dσ/dt(γp→ π+n)∼ const
f ixed θCM scaling

Conformal invariance 

Constituent counting rules
Farrar, sjb; Muradyan, Matveev, Tavkelidze

No sign of running coupling

57

θcm = 90o

ψd(xi,#k⊥i) = ψbody
d × ψn × ψp

Antiquark interacts with target nucleus at
energy ŝ ∝ 1

xbj

Regge contribution: σq̄N ∼ ŝαR−1 gives F2N ∼
x1−αR

Nonsinglet Kuti-Weisskoff F2p − F2n ∝
√

xbj

at small xbj.
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Deuteron Photodisintegration 

PQCD and AdS/CFT:

sntot−2dσdt (A+B→C+D) =
FA+B→C+D(θCM)

s11dσdt (γd→ np) = F(θCM)

ntot−2=
(1 + 6 + 3+ 3 ) - 2 = 11

Reflects conformal invariance 

J-Lab
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0.5

0.4

0.3

0.2

0.1

0
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(1
–q

2 /m
2 0)

 F
D(

q2
)/F

2 N(
q2

/4
)

–q2  (GeV2)10-2004 
2763A18

Deuteron Reduced Form Factor

! Pion Form Factor×15%

• 15% Hidden Color in the Deuteron
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We will consider both holographic models 

1 The Holographic Correspondence

• In the “ semi-classical” approximation to QCD with massless quarks and no quantum loops the β

function is zero, and the approximate theory is scale and conformal invariant.

• Isomorphism of SO(4, 2) of conformal QCD with the group of isometries of AdS space

ds2 =
R2

z2
(ηµνdxµdxν − dz2).

• Semi-classical correspondence as a first approximation to QCD (strongly coupled at all scales).

• xµ → λxµ, z → λz, maps scale transformations into the holographic coordinate z.

• Different values of z correspond to different scales at which the hadron is examined: AdS boundary at

z → 0 corresponds to the Q→∞, UV zero separation limit.

• There is a maximum separation of quarks and a maximum value of z at the IR boundary

• Truncated AdS/CFT (Hard-Wall) model: cut-off at z0 = 1/ΛQCD breaks conformal invariance and

allows the introduction of the QCD scale (Hard-Wall Model) Polchinski and Strassler (2001).

• Smooth cutoff: introduction of a background dilaton field ϕ(z) – usual linear Regge dependence can

be obtained (Soft-Wall Model) Karch, Katz, Son and Stephanov (2006).

60



AdS/QCD  Stan Brodsky 
 SLAC & IPPP

Landau Congress
Moscow,  June 20, 2008

• Polchinski & Strassler: AdS/CFT  builds in conformal symmetry at 
short distances; counting rules for form factors and hard exclusive 
processes; non-perturbative derivation

• Goal: Use AdS/CFT to provide an approximate model of hadron 
structure with confinement at large distances, conformal behavior 
at short distances

• de Teramond, sjb:  AdS/QCD Holographic Model: Initial “semi-
classical” approximation to QCD.  Predict light-quark hadron 
spectroscopy,  form factors.

• Karch, Katz, Son, Stephanov: Linear Confinement

• Mapping of AdS amplitudes to 3+ 1 Light-Front equations, 
wavefunctions

• Use AdS/CFT wavefunctions as expansion basis for diagonalizing 
HLFQCD ; variational methods

61
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• Use mapping of conformal group SO(4,2) to AdS5

• Scale Transformations represented by wavefunction  
in 5th dimension

• Match solutions at small z to conformal dimension of 
hadron wavefunction at short distances

• Hard wall model: Confinement at large distances and 
conformal symmetry in interior

• Truncated space simulates “bag” boundary conditions

ψ(z) ∼ z∆ at z → 0

[CF =
N2

C−1
2NC

]

FH(Q2)× [Q2]nH−1 ∼ constant

[Q2]nH−1FH(Q2) ∼ constant

FH(Q2) ∼ [ 1
Q2]

nH−1

fd(Q
2) ≡ Fd(Q

2)

Fp(
Q2
4 )Fp(

Q2
4 )

ψ(z0) = 0

ψ(z) ∼ z∆ at z → 0

[CF =
N2

C−1
2NC

]

FH(Q2)× [Q2]nH−1 ∼ constant

[Q2]nH−1FH(Q2) ∼ constant

FH(Q2) ∼ [ 1
Q2]

nH−1

ψ(z0) = 0

0 < z < z0

z0 = 1
ΛQCD

ψ(z) ∼ z∆ at z → 0

[CF =
N2

C−1
2NC

]

FH(Q2)× [Q2]nH−1 ∼ constant

ψ(z0) = 0

0 < z < z0

z0 = 1
ΛQCD

ψ(z) ∼ z∆ at z → 0

[CF =
N2

C−1
2NC

]

FH(Q2)× [Q2]nH−1 ∼ constant

x2
µ → λ2x2

µ

z → λz

ψ(z0) = 0

0 < z < z0

z0 = 1
ΛQCD

ψ(z) ∼ z∆ at z → 0

x2
µ → λ2x2

µ

z → λz

ψ(z0) = 0

0 < z < z0

z0 = 1
ΛQCD

ψ(z) ∼ z∆ at z → 0

x2
µ → λ2x2

µ

z → λz

ψ(z0) = 0

0 < z < z0

z0 = 1
ΛQCD

ψ(z) ∼ z∆ at z → 0

AdS/CFT
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AdS Schrodinger Equation for bound state 
of  two scalar constituents:

[− d2

dz2 + V(z)]φ(z) = M2φ(z)

V(z) = −1−4L2

4z2 → −1−4L2

4z2 + κ4z2

∆ = 2 + L

Mµν,Pµ,D,Kµ,

the generators of S

Analytically continue

[− d2

dz2 + V(z)]φ(z) = M2φ(z)

V(z) = −1−4L2

4z2 → −1−4L2

4z2 + κ4z2

∆ = 2 + L

Mµν,Pµ,D,Kµ,

the generators of S

Analytically continue

Derived from variation of Action in AdS5

φ(z = z0 = 1
Λc

) = 0.

[− d2

dz2 + V(z)]φ(z) = M2φ(z)

V(z) = −1−4L2

4z2 → −1−4L2

4z2 + κ4z2

∆ = 2 + L

V(z) = −1−4L2

4z2 + κ4z2

Mµν,Pµ,D,Kµ,

Hard wall model: truncated space

Let Φ(z) = z3/2φ(z)

Interpret L
 as orbital angular 

momentum
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AdS/QCD G. F. de Téramond

• Pseudoscalar mesons: O3+L = ψγ5D{!1 . . . D!m}ψ (Φµ = 0 gauge).

• 4-d mass spectrum from boundary conditions on the normalizable string modes at z = z0,

Φ(x, zo) = 0, given by the zeros of Bessel functions βα,k: Mα,k = βα,kΛQCD

• Normalizable AdS modes Φ(z)

10 2 3 4

1

2

0

3

4

5

z

Φ(z)

2-2006
8721A7

10 2 3 4

-2

-4

0

2

4

z

Φ(z)

2-2006
8721A8

Fig: Meson orbital and radial AdS modes for ΛQCD = 0.32 GeV.

Caltech High Energy Seminar, Feb 6, 2006 Page 19

z∆

γd→ np

γγ → π+π−

γγ → K+K−

s = E2
cm = W2 = Q2

Q4GMp(Q
2)

Q2FK(Q2)

z∆

z0

γd→ np

γγ → π+π−

γγ → K+K−

s = E2
cm = W2 = Q2

Q4GMp(Q
2)

z∆

z0 = 1
ΛQCD

γd→ np

γγ → π+π−

γγ → K+K−

s = E2
cm = W2 = Q2

Q4GMp(Q
2)

Match fa#-off at sma# z to conformal twist-dimension 
at short distances

∆ = 2 + L
twist

S = 0

O2+L
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8721A18
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Φ(z)

10 2 3 4
z2-2007

8721A19

Fig: Orbital and radial AdS modes in the hard wall model for ΛQCD = 0.32 GeV .
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Fig: Light meson and vector meson orbital spectrum ΛQCD = 0.32 GeV

Exploring QCD, Cambridge, August 20-24, 2007 Page 23

S = 0 S = 1
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AdS Schrodinger Equation for bound state 
of  two scalar constituents:

[− d2

dz2 + V(z)]φ(z) = M2φ(z)

V(z) = −1−4L2

4z2 → −1−4L2

4z2 + κ4z2

∆ = 2 + L

Mµν,Pµ,D,Kµ,

the generators of S

Analytically continue

[− d2

dz2 + V(z)]φ(z) = M2φ(z)

V(z) = −1−4L2

4z2 → −1−4L2

4z2 + κ4z2

∆ = 2 + L

Mµν,Pµ,D,Kµ,

the generators of S

Analytically continue

Derived from variation of Action in AdS5

[− d2

dz2 + V(z)]φ(z) = M2φ(z)

V(z) = −1−4L2

4z2 → −1−4L2

4z2 + κ4z2

∆ = 2 + L

V(z) = −1−4L2

4z2 + κ4z2

Mµν,Pµ,D,Kµ,

the generators of S

Soft wall model: Harmonic oscillator confinement

Hard wall model: truncated space

Let Φ(z) = z3/2φ(z)

φ(z = z0 = 1/Λ0) = 0
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Fig: Orbital and radial AdS modes in the soft wall model for κ = 0.6 GeV .
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Light meson orbital (a) and radial (b) spectrum for κ = 0.6 GeV.

Exploring QCD, Cambridge, August 20-24, 2007 Page 26

S = 0 S = 0
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Higher Spin Bosonic Modes SW

• Effective LF Schrödinger wave equation
[
− d2

dζ2
− 1− 4L2

4ζ2
+ κ4ζ2 + 2κ2(L+ S−1)

]
φS(ζ) =M2φS(ζ)

with eigenvalues M2 = 2κ2(2n + 2L + S).

• Compare with Nambu string result (rotating flux tube): M2
n(L) = 2πσ (n + L + 1/2) .

0

2

(a) (b)

4

(G
eV

2 )

0 2 4
5-2006
8694A20

ω (782)
ρ (770)

a2 (1320)

f2 (1270)

ρ3 (1690)

ω3 (1670)

f4 (2050)
a4 (2040)

L
0 2 4

n

ρ (770)

ρ (1450)

ρ (1700)

Vector mesons orbital (a) and radial (b) spectrum for κ = 0.54 GeV.

• Glueballs in the bottom-up approach: (HW) Boschi-Filho, Braga and Carrion (2005); (SW) Colangelo,

De Facio, Jugeau and Nicotri( 2007).

Exploring QCD, Cambridge, August 20-24, 2007 Page 27

[
− d2

dz2
− 1− 4L2

4z2
+ κ4z2 + 2κ2(L+ S−1)

]
φS(z) =M2φS(z)

S = 1S = 1

Soft-wall model

Same slope in n and L 
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Linear particle trajectories

Plot of spins of families of particles against their squared masses:

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7 8

• 4 degenerate familes of particles: α(t) ≈ 1
2 + 0.9t

The particles in square brackets are listed in the data tables, but there is some
uncertainty about whether they exist.

The function α(t) is called a Regge trajectory.

Linear particle trajectories

Plot of spins of families of particles against their squared masses:

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7 8

• 4 degenerate familes of particles: α(t) ≈ 1
2 + 0.9t

The particles in square brackets are listed in the data tables, but there is some
uncertainty about whether they exist.

The function α(t) is called a Regge trajectory.

AdS/QCD Soft Wall Model -- Reproduces  Linear Regge Trajectories
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Nearly Conformal QCD and AdS/CFT G. F. de Téramond, UCR

• Propagation of external perturbation suppressed inside AdS.

• At large enoughQ ∼ r/R2, the interaction occurs in the large-r conformal region. Important

contribution to the FF integral from the boundary near z ∼ 1/Q.

J(Q, z), Φ(z)

1 2 3 4 5

0.2

0.4

0.6

0.8

1

z

• Consider a specific AdS mode Φ(n) dual to an n partonic Fock state |n〉. At small z, Φ(n)

scales as Φ(n) ∼ z∆n . Thus:

F (Q2) →
[

1
Q2

]τ−1

,

where τ = ∆n − σn, σn =
∑n

i=1 σi. The twist is equal to the number of partons, τ = n.

Quark-Hadron Duality, Frascati, 6-8 June 2005 Page 22

Dimensional Quark Counting Rules:
General result from 

AdS/CFT

70

Hadron Form Factors from AdS/CFT 

Polchinski, Strassler
de Teramond, sjb

Andreev

D(z) ∼ (1− z)2Nspect−1

zD(z) = F (x = 1/z)

zD(z)c→pX = Fp→cX(x = 1/z)

zi ∝ m⊥i =
√

m2
i + k2

⊥

X = cūd̄ū

F (Q2)I→F =
∫ dz

z3ΦF (z)J(Q, z)ΦI(z)

J(Q, z) = zQK1(zQ)

αs(Q2)

β(Q2) = dαs(Q2)
d logQ2 → 0

Π(Q2)→ α
15π

Q2

m2

Q2 << 4m2

A

High Q2 
from 

small z  ~ 1/Q

J(Q, z) Φ(z)
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Fπ(q2)

q2(GeV 2)

However J/ψ → ρπ

is largest two-body hadron decay

Small value for ψ′ → ρπ

ρ

π

Fπ(q2)

q2(GeV 2)

However J/ψ → ρπ

is largest two-body hadron decay

Small value for ψ′ → ρπ

ρ

π

Spacelike pion form factor from AdS/CFT

Fπ(q2)

q2(GeV 2)

However J/ψ → ρπ

is largest two-body hadron decay

Small value for ψ′ → ρπ

ρ

π

Fπ(q2)

q2(GeV 2)

However J/ψ → ρπ

is largest two-body hadron decay

Small value for ψ′ → ρπ

ρ

π

HW: Truncated Space Confinement

SW: Harmonic Oscillator Confinement

One parameter -  set by pion decay constant

Data Compilation from Baldini, Kloe and Volmer

de Teramond, sjb
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• Analytical continuation to time-like region q2 → −q2 (Mρ = 4κ2 = 750 MeV)

• Strongly coupled semiclassical gauge/gravity limit hadrons have zero widths (stable).

-10 -5 0 5 10

-3

-2

-1

0

1

2

7-2007
8755A4q2  (GeV2)

log
 IF

π (
q2 )I

Space and time-like pion form factor for κ = 0.375 GeV in the SW model.

• Vector Mesons: Hong, Yoon and Strassler (2004); Grigoryan and Radyushkin (2007).

Exploring QCD, Cambridge, August 20-24, 2007 Page 40

Mρ = 2κ = 750 MeV
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Dirac’s Amazing  Idea: 
The Front Form

Fig. 1. Dirac’s three forms of Hamiltonian dynamics.

2.4. Forms of Hamiltonian dynamics

Obviously, one has many possibilities to parametrize space—time by introducing some general-
ized coordinates xJ (x). But one should exclude all those which are accessible by a Lorentz
transformation. Those are included anyway in a covariant formalism. This limits considerably the
freedom and excludes, for example, almost all rotation angles. Following Dirac [123] there are no
more than three basically different parametrizations. They are illustrated in Fig. 1, and cannot be
mapped on each other by a Lorentz transform. They differ by the hypersphere on which the fields
are initialized, and correspondingly one has different “times”. Each of these space—time parametriz-
ations has thus its own Hamiltonian, and correspondingly Dirac [123] speaks of the three forms of
Hamiltonian dynamics: The instant form is the familiar one, with its hypersphere given by t"0. In
the front form the hypersphere is a tangent plane to the light cone. In the point form the time-like
coordinate is identified with the eigentime of a physical system and the hypersphere has a shape of
a hyperboloid.

Which of the three forms should be prefered? The question is difficult to answer, in fact it is
ill-posed. In principle, all three forms should yield the same physical results, since physics should
not depend on how one parametrizes the space (and the time). If it depends on it, one has made
a mistake. But usually one adjusts parametrization to the nature of the physical problem to
simplify the amount of practical work. Since one knows so little on the typical solutions of a field
theory, it might well be worth the effort to admit also other than the conventional “instant” form.

The bulk of research on field theory implicitly uses the instant form, which we do not even
attempt to summarize. Although it is the conventional choice for quantizing field theory, it has

S.J. Brodsky et al. / Physics Reports 301 (1998) 299—486 315

Instant Form Front Form 

z0 = 1
ΛQCD

z∆

∆ = 3 + L: conformal dimension of meson

P+ = P0 + Pz

Fixed τ = t + z/c

σ = ct− z

z0 = 1
ΛQCD

z∆

∆ = 3 + L: conformal dimension of meson

P+ = P0 + Pz

Fixed τ = t + z/c

σ = ct− z

Evolve in 
light-front time!

73

Evolve in 
ordinary time

P.A.M Dirac, Rev. Mod. Phys. 21, 392 (1949)
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Each element of 
flash photograph  

illuminated  
at same LF time

τ = t + z/c
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zero for q+ = 0

75

 

 Stan Brodsky,  SLAC
AdS/QFT and QCDErice

September 1, 2007 61

Calculation of Form Factors in TOPTH

zero !!

Calculation of Form Factors in  Equal-Time Theory
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AdS/QFT and QCDErice

September 1, 2007 61

Calculation of Form Factors in TOPTH

Instant Form

Calculation of Form Factors in  Light-Front Theory
Front Form

Need vacuum-induced currents

Absent for q+ = 0Simple LF vacuum
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Calculation of Hadron Form Factors 
in Instant Form

• Current matrix elements of hadron include interactions with 
vacuum-induced currents arising from infinitely-complex vacuum

• Pair creation from vacuum occurs at any time before probe acts  --  
acausal

• Knowledge of hadron wavefunction insufficient to compute 
current matrix elements

• Requires dynamical boost of hadron wavefunction -- unknown 
except at weak binding

• Complex vacuum even for QED

• None of these complications occur for quantization at fixed LF 
time (front form)

AdS/QCDUniversity of Helsinki
April 29, 2008

 Stan Brodsky,  SLAC & IPPP

Calculation of Form Factors in  Equal-Time Theory

 

20

Calculation of Form Factors in  Light-Front Theory

 

zero for q+ = 0 zero !!

Need vacuum !uctuations

20
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General remarks about orbital angular mo-
mentum

!R⊥

xi
!R⊥+!b⊥i

∑n
i
!b⊥i = !0⊥

∑n
i xi = 1

∑n
i=1(xi

!P⊥+ !k⊥i) = !P⊥

xi
!P⊥+ !k⊥i

∑n
i

!k⊥i = !0⊥

∑n
i xi = 1

General remarks about orbital angular mo-
mentum

Ψn(xi,!k⊥i, λi)

∑n
i=1(xi

!R⊥+!b⊥i) = !R⊥

xi
!R⊥+!b⊥i

∑n
i
!b⊥i = !0⊥

∑n
i xi = 1

P+, !P+

xiP
+, xi

!P⊥+ !k⊥i

ẑ

!L = !R× !P

!Li = (xi
!R⊥+!b⊥i)× !P

!"i = !b⊥i × !k⊥i

!"i = !Li − xi
!R⊥ × !P = !b⊥i × !P

A(σ,∆⊥) = 1
2π

∫
dζe

i
2σζM(ζ,∆⊥)

P+, $P⊥

xiP
+, xi

$P⊥+ $k⊥i

ζ = Q2

2p·q

ẑ

$L = $R× $P

$Li = (xi
$R⊥+$b⊥i)× $P

P+ = P0 + Pz

Fixed τ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

ψ(σ, b⊥)

β = dαs(Q2)
d lnQ2 < 0

u

Invariant under boosts!  Independent of P
μ 

77

Light-Front Wavefunctions:  rigorous representation of 
composite systems in quantum field theory

x =
k+

P+
=

k0 + k3

P 0 + P 3
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S.J. Brodsky et al. / Nuclear Physics B 593 (2001) 311–335 331

moment vanishes [22]. The light-cone formalism also properly incorporatesWigner boosts.

Thus this model of composite systems can serve as a useful theoretical laboratory to

interrelate hadronic properties and check the consistency of formulae proposed for the

study of hadron substructure.

7. Spin and orbital angular momentum composition of light-cone wavefunctions

In general the light-cone wavefunctions satisfy conservation of the z projection of

angular momentum:

J z =
n∑

i=1
sz
i +

n−1∑

j=1
lzj . (62)

The sum over sz
i represents the contribution of the intrinsic spins of the n Fock state

constituents. The sum over orbital angular momenta lzj = −i
(
k1j

∂
∂k2j

− k2j
∂

∂k1j

)
derives from

the n−1 relative momenta. This excludes the contribution to the orbital angularmomentum
due to the motion of the center of mass, which is not an intrinsic property of the hadron.

We can see how the angular momentum sum rule Eq. (62) is satisfied for the

wavefunctions Eqs. (20) and (23) of the QED model system of two-particle Fock states.

In Table 1 we list the fermion constituent’s light-cone spin projection sz
f = 1

2
λf, the boson

constituent spin projection sz
b = λb, and the relative orbital angular momentum lz for each

contributing configuration of the QED model system wavefunction.

Table 1 is derived by calculating the matrix elements of the light-cone helicity operator

γ +γ 5 [29] and the relative orbital angular momentum operator−i
(
k1 ∂

∂k2
− k2 ∂

∂k1

)
[16,30,

31] in the light-cone representation. Each configuration satisfies the spin sum rule: J z =
sz
f + sz

b + lz.

For a better understanding of Table 1, we look at the non-relativistic and ultra-relativistic

limits. At the non-relativistic limit, the transversal motions of the constituent can be

neglected and we have only the | + 1
2
〉 → | − 1

2
+ 1〉 configuration which is the non-

relativistic quantum state for the spin-half system composed of a fermion and a spin-1

boson constituents. The fermion constituent has spin projection in the opposite direction

to the spin J z of the whole system. However, for ultra-relativistic binding in which the

transversal motions of the constituents are large compared to the fermion masses, the

Table 1

Spin decomposition of the J z = + 1
2
electron

Configuration Fermion spin sz
f

Boson spin sz
b

Orbital ang. mom. lz

∣∣+ 1
2

〉
→

∣∣+ 1
2

+ 1
〉

+ 1
2

+1 −1
∣∣+ 1

2

〉
→

∣∣− 1
2

+ 1
〉

− 1
2

+1 0
∣∣+ 1

2

〉
→

∣∣+ 1
2

− 1
〉

+ 1
2

−1 +1

Conserved 
LF Fock state by Fock State
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moment vanishes [22]. The light-cone formalism also properly incorporatesWigner boosts.

Thus this model of composite systems can serve as a useful theoretical laboratory to

interrelate hadronic properties and check the consistency of formulae proposed for the

study of hadron substructure.

7. Spin and orbital angular momentum composition of light-cone wavefunctions

In general the light-cone wavefunctions satisfy conservation of the z projection of

angular momentum:

J z =
n∑

i=1
sz
i +

n−1∑

j=1
lzj . (62)

The sum over sz
i represents the contribution of the intrinsic spins of the n Fock state

constituents. The sum over orbital angular momenta lzj = −i
(
k1j

∂
∂k2j

− k2j
∂

∂k1j

)
derives from

the n−1 relative momenta. This excludes the contribution to the orbital angularmomentum
due to the motion of the center of mass, which is not an intrinsic property of the hadron.

We can see how the angular momentum sum rule Eq. (62) is satisfied for the

wavefunctions Eqs. (20) and (23) of the QED model system of two-particle Fock states.

In Table 1 we list the fermion constituent’s light-cone spin projection sz
f = 1

2
λf, the boson

constituent spin projection sz
b = λb, and the relative orbital angular momentum lz for each

contributing configuration of the QED model system wavefunction.

Table 1 is derived by calculating the matrix elements of the light-cone helicity operator

γ +γ 5 [29] and the relative orbital angular momentum operator−i
(
k1 ∂

∂k2
− k2 ∂

∂k1

)
[16,30,

31] in the light-cone representation. Each configuration satisfies the spin sum rule: J z =
sz
f + sz

b + lz.

For a better understanding of Table 1, we look at the non-relativistic and ultra-relativistic

limits. At the non-relativistic limit, the transversal motions of the constituent can be

neglected and we have only the | + 1
2
〉 → | − 1

2
+ 1〉 configuration which is the non-

relativistic quantum state for the spin-half system composed of a fermion and a spin-1

boson constituents. The fermion constituent has spin projection in the opposite direction

to the spin J z of the whole system. However, for ultra-relativistic binding in which the

transversal motions of the constituents are large compared to the fermion masses, the

Table 1

Spin decomposition of the J z = + 1
2
electron

Configuration Fermion spin sz
f

Boson spin sz
b

Orbital ang. mom. lz

∣∣+ 1
2

〉
→

∣∣+ 1
2

+ 1
〉

+ 1
2

+1 −1
∣∣+ 1

2

〉
→

∣∣− 1
2

+ 1
〉

− 1
2

+1 0
∣∣+ 1

2

〉
→

∣∣+ 1
2

− 1
〉

+ 1
2

−1 +1

n-1 orbital angular momenta

Angular Momentum on the Light-Front

Nonzero Anomalous Moment -->Nonzero orbital angular momentum
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General remarks about orbital angular mo-
mentum

Ψn(xi,!k⊥i, λi)

∑n
i=1(xi

!R⊥+!b⊥i) = !R⊥

xi
!R⊥+!b⊥i

∑n
i
!b⊥i = !0⊥

∑n
i xi = 1

LFWFs

B-Decays

GPDs

Distribution 
Amplitudes

Hadronization 
at the amplitude level
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Hadronization at the Amplitude Level

e+

e−

γ∗

g

q̄

q

pp → p + J/ψ + p

e+

e−

γ∗

g

q̄

q

pp → p + J/ψ + p

e+

e−

γ∗

g

q̄

q

pp → p + J/ψ + p

e+

e−

γ∗

g

q̄

q

pp → p + J/ψ + p

e+

e−

γ∗

g

q̄

q

pp → p + J/ψ + p

e+

e−

γ∗

g

q̄

q

pp → p + J/ψ + p

Construct helicity amplitude using Light-Front 
Perturbation theory;   coalesce quarks via LFWFs

ψ(x,"k⊥, λi)

e+

e−

γ∗

g

q̄

q

ψH(x,"k⊥, λi)

pH

x,"k⊥

1− x,−"k⊥

e+

e−

γ∗

ψH(x,"k⊥, λi)

pH

x,"k⊥

1− x,−"k⊥

e+

e−

γ∗

ψH(x,"k⊥, λi)

pH

x,"k⊥

1− x,−"k⊥

e+

e−

γ∗

ψH(x,"k⊥, λi)

pH

x,"k⊥

1− x,−"k⊥

τ = x+

e+

e−

Event amplitude 
generator
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AdS/QCD G. F. de Téramond

Holographic Model for QCD Light-Front Wavefunctions

SJB and GdT in preparation

• Drell-Yan-West form factor in the light-cone (two-parton state)

F (q2) =
∑

q

eq

∫ 1

0
dx

∫
d2!k⊥
16π3

ψ∗P ′(x,!k⊥ − x!q⊥) ψP (x,!k⊥).

• Fourrier transform to impact parameter space!b⊥

ψ(x,!k⊥) =
√

4π

∫
d2!b⊥ ei!b⊥·!k⊥ψ̃(x,!b⊥)

• Find (b = |!b⊥|) :

F (q2) =
∫ 1

0
dx

∫
d2!b⊥ eix!b⊥·!q⊥

∣∣ψ̃(x, b)
∣∣2

= 2π

∫ 1

0
dx

∫ ∞

0
b db J0 (bqx)

∣∣ψ̃(x, b)
∣∣2,

Caltech High Energy Seminar, Feb 6, 2006 Page 33

Soper

81

Light-Front Representation 
of Two-Body Meson Form Factor

81
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Holographic Mapping of AdS Modes to QCD LFWFs

• Integrate Soper formula over angles:

F (q2) = 2π

∫ 1

0
dx

(1− x)
x

∫
ζdζJ0

(
ζq

√
1− x

x

)
ρ̃(x, ζ),

with ρ̃(x, ζ) QCD effective transverse charge density.

• Transversality variable

ζ =
√

x

1− x

∣∣∣
n−1∑

j=1

xjb⊥j

∣∣∣.

• Compare AdS and QCD expressions of FFs for arbitrary Q using identity:

∫ 1

0
dxJ0

(
ζQ

√
1− x

x

)
= ζQK1(ζQ),

the solution for J(Q, ζ) = ζQK1(ζQ) !

Exploring QCD, Cambridge, August 20-24, 2007 Page 35
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• Electromagnetic form-factor in AdS space:

Fπ+(Q2) = R3
∫

dz

z3
J(Q2, z) |Φπ+(z)|2 ,

where J(Q2, z) = zQK1(zQ).

• Use integral representation for J(Q2, z)

J(Q2, z) =
∫ 1

0
dx J0

(
ζQ

√
1− x

x

)

• Write the AdS electromagnetic form-factor as

Fπ+(Q2) = R3
∫ 1

0
dx

∫
dz

z3
J0

(
zQ

√
1− x

x

)
|Φπ+(z)|2

• Compare with electromagnetic form-factor in light-front QCD for arbitrary Q

∣∣∣ψ̃qq/π(x, ζ)
∣∣∣
2

=
R3

2π
x(1− x)

|Φπ(ζ)|2

ζ4

with ζ = z, 0 ≤ ζ ≤ ΛQCD

From String to Things, INT, Seattle, April 10, 2008 Page 29
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ψ(x,"b⊥) = ψ(ζ)

φ(z)

ζ =
√

(x(1− x)|b⊥|

z

z∆

z0 = 1
ΛQCD

γd→ np

ψ(x,"b⊥) = ψ(ζ)

φ(z)

ζ =
√

x(1− x)"b2⊥

z

z∆

z0 = 1
ΛQCD

γd→ np

ψ(x,"b⊥) = ψ(ζ)

φ(z)

ζ =
√

x(1− x)"b2⊥

z

z∆

z0 = 1
ΛQCD

γd→ np

x (1− x) !b⊥

ψ(x,!b⊥) = ψ(ζ)

φ(z)

ζ =
√

x(1− x)!b2⊥

z

z∆

z0 = 1
ΛQCD

x (1− x) !b⊥

ψ(x,!b⊥) = ψ(ζ)

φ(z)

ζ =
√

x(1− x)!b2⊥

z

z∆

z0 = 1
ΛQCD

x (1− x) !b⊥

ψ(x,!b⊥) = ψ(ζ)

φ(z)

ζ =
√

x(1− x)!b2⊥

z

z∆

z0 = 1
ΛQCD

x (1− x) !b⊥

ψ(x,!b⊥) = ψ(ζ)

φ(z)

ζ =
√

x(1− x)!b2⊥

z

z∆

z0 = 1
ΛQCD

LF(3+1)              AdS5

84

Light-Front Holography: Unique mapping derived from 
equality of LF and AdS  formula for current matrix elements

ψ(x, ζ) =
√

x(1− x)ζ−1/2φ(ζ)

x (1− x) !b⊥

ψ(x,!b⊥) = ψ(ζ)

φ(z)

ζ =
√

x(1− x)!b2⊥

z

z∆

z0 = 1
ΛQCD
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3

from momentum conservation at the vertex we find

F (Q2) = R3

∫ ∞

0

dz

z3
e3A(z)ΦP ′(z)J(Q, z)ΦP (z). (9)

The form factor in AdS is the overlap of the normalizable
modes dual to the incoming and outgoing hadron ΦP and
ΦP ′ and the non-normalizable mode J(Q, z), dual to the
external source [15]

We integrate (4) over angles to obtain

F (q2) = 2π

∫ 1

0
dx

(1− x)
x

∫
ζdζJ0

(
ζq

√
1− x

x

)
ρ̃(x, ζ),

(10)
where we have introduced the variable

ζ =
√

x

1− x

∣∣∣
n−1∑

j=1

xjb⊥j

∣∣∣, (11)

representing the x-weighted transverse impact coordinate
of the spectator system.

We can now make contact with the AdS results. Com-
paring (10) with the expression for the form factor in
AdS space (9) for arbitrary values of Q we find

J(Q, ζ) =
∫ 1

0
dxJ0

(
ζQ

√
1− x

x

)
= ζQK1(ζQ), (12)

which is also the solution for the electromagnetic poten-
tial in AdS (8). Thus we can identify the spectator den-
sity function appearing in the light-front formalism with
the corresponding AdS density

ρ̃(x, ζ) =
R3

2π

x

1− x
e3A(ζ) |Φ(ζ)|2

ζ4
. (13)

Eq (13) expresses the duality between extended AdS
modes and point-like partonic distributions. It gives a
precise relation between the string modes in AdS5 and
the QCD transverse density in four dimensional space-
time. The variable ζ, 0 ≤ ζ ≤ Λ−1

QCD, represents the
invariant separation between quarks, and it is also the
holographic variable z, ζ = z.

For two partons ρ̃(x, ζ) = |ψn=2(x, ζ)|2/(1−x)2, and a
closed form solution for the two-constituent bound state
light-front wave function is found

|ψ(x, ζ)|2 =
R3

2π
x(1− x) e3A(ζ) |Φ(ζ)|2

ζ4
. (14)

In the case of two partons ζ2 = x
1−x%η2

⊥ = x(1− x)b2
⊥.

For spin-carrying constituents the relevant dimension
is that of twist (dimension minus spin) τ = ∆−σ, where
σ is the sum over the constituent’s spin σ =

∑n
i=1 σi.

Twist is equal to the number of partons τ = n. Upon
the substitution ∆ → n + L, φ(z) = z−3/2Φ(z), in

the five-dimensional AdS wave equations describing glue-
balls, mesons or vector mesons [5] we find an effec-
tive Schrödinger equation written in terms of the four-
dimensional impact variable ζ

[
− d2

d2ζ
+ V (ζ)

]
= M2φ(ζ), (15)

with the effective conformal potential [16]

V (ζ) = −
1− 4L2

4ζ2
. (16)

The new wave equation has a stable range of solutions ac-
cording to the Breitenlohner-Freedman bound [17]. The
solution to (15) is

φ(z) = z−
3
2 Φ(z) = Cz

1
2 JL(zM). (17)

The eigenvalues are determined by the boundary condi-
tions at φ(z = 1/ΛQCD) = 0, and are given in terms of
the roots of the Bessel functions: ML,k = βL,kΛQCD.
The normalized LFWF ψ̃L,k follow from (14) [18]

ψ̃L,k(x,%b⊥) = BL,k

√
x(1− x)

JL

(√
x(1− x)|%b⊥|βL,kΛQCD

)
θ
(
%b 2
⊥ ≤

Λ−2
QCD

x(1− x)

)
, (18)

where BL,k = ΛQCD

[
(−1)LπJ1+L(βL,k)J1−L(βL,k)

]− 1
2 .

The first eigenmodes are depicted in Figure 1, and the
masses of the light mesons in Figure 2. The predictions
for the lightest hadrons are improved relative to the re-
sults of [5] with the boundary conditions determined in
terms of twist instead of conformal dimensions. The de-
scription of baryons is carried out along similar lines and
will be presented somewhere else.

ζ(GeV–1) ζ(GeV–1)

ψ(x,ζ)

2-2006
8721A10

x x
(a) (b)

00.5
1

1
2

3
4

5

0

2

4

0

00.5
1

1
2

3
4

5

1

2

0

FIG. 1: Two-parton bound state holographic LFWF eψ(x, ζ)

for ΛQCD = 0.32 GeV: (a) ground state # = 0, k = 1, (b) first

orbital excited state # = 1, k = 1.

We have shown how the string amplitude Φ(z) defined
on the fifth dimension in AdS5 space can be precisely

Effective conformal 
potential:

Holography: 
Map AdS/CFT  to  3+1 LF Theory

[
− d2

d2ζ
+ V (ζ)

]
=M2φ(ζ)

[
− d2

dζ2 + V (ζ)
]
=M2φ(ζ)

ζ2 = x(1− x)b2
⊥.

Jz = Sz
p =

∑n
i=1 Sz

i +
∑n−1

i=1 #z
i = 1

2

each Fock State

Jz
p = Sz

q + Sz
g + Lz

q + Lz
g = 1

2

Relativistic LF radial equation

G. de Teramond, sjb 

u↓(x)
u↑(x)

∼ (1− x)2

Q2(GeV2)

[
− d2

d2ζ
+ V (ζ)

]
φ(ζ) =M2φ(ζ)

[
− d2

dζ2 + V (ζ)
]
φ(ζ) =M2φ(ζ)

ζ2 = x(1− x)b2
⊥.

#L = #P × #R

x (1− x) !b⊥

ψ(x,!b⊥) = ψ(ζ)

φ(z)

ζ =
√

x(1− x)!b2⊥

z

z∆

z0 = 1
ΛQCD

x (1− x) !b⊥

ψ(x,!b⊥) = ψ(ζ)

φ(z)

ζ =
√

x(1− x)!b2⊥

z

z∆

z0 = 1
ΛQCD

x (1− x) !b⊥

ψ(x,!b⊥) = ψ(ζ)

φ(z)

ζ =
√

x(1− x)!b2⊥

z

z∆

z0 = 1
ΛQCD

Frame Independent

85

+κ4ζ2 confining potential:
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• Hadronic gravitational form-factor in AdS space

Aπ(Q2) = R3
∫

dz

z3
H(Q2, z) |Φπ(z)|2 ,

where H(Q2, z) = 1
2Q2z2K2(zQ)

• Use integral representation for H(Q2, z)

H(Q2, z) = 2
∫ 1

0
x dxJ0

(
zQ

√
1− x

x

)

• Write the AdS gravitational form-factor as

Aπ(Q2) = 2R3
∫ 1

0
x dx

∫
dz

z3
J0

(
zQ

√
1− x

x

)
|Φπ(z)|2

• Compare with gravitational form-factor in light-front QCD for arbitrary Q

∣∣∣ψ̃qq/π(x, ζ)
∣∣∣
2

=
R3

2π
x(1− x)

|Φπ(ζ)|2

ζ4
,

which is identical to the result obtained from the EM form-factor

From String to Things, INT, Seattle, April 10, 2008 Page 31

Abidin & Carlson 

Gravitational Form Factor in AdS space

Identical  to LF Holography obtained from electromagnetic current
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Light-Front AdS5 Duality

At fixed x+

ds2 = −R2

z2 (dx2
⊥ + dz2)

Invariant under dx2
⊥ → λ2dx2

⊥
z → λz

87
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Example: Pion LFWF

• Two parton LFWF bound state:

ψ̃HW
qq/π(x,b⊥) =

ΛQCD

√
x(1− x)√

πJ1+L(βL,k)
JL

(√
x(1− x) |b⊥|βL,kΛQCD

)
θ

(
b2
⊥ ≤

Λ−2
QCD

x(1− x)

)
,

ψ̃SW
qq/π(x,b⊥) = κL+1

√
2n!

(n + L)!
[x(1− x)]

1
2+L|b⊥|Le−

1
2 κ2x(1−x)b2

⊥LL
n

(
κ2x(1− x)b2

⊥
)
.

(a) (b)b b

xx

ψ
(x,
b)

7-2007
8755A11.0

00

0 10 20 0 10 20

0.05

0.10

0.5

1.0

0

0.5

0

0.1

0.2

Fig: Ground state pion LFWF in impact space. (a) HW model ΛQCD = 0.32 GeV, (b) SW model κ = 0.375 GeV.

Exploring QCD, Cambridge, August 20-24, 2007 Page 37
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Prediction from AdS/CFT: Meson LFWF

ψ(x, k⊥)
0.20.40.60.8

1.3

1.4

1.5

0

0.05

0.1

0.15

0.2

0

5

       “Soft Wall” 
model

ψ(x, k⊥)(GeV)

de Teramond, sjb

89

φM(x, Q0) ∝
√

x(1− x)

µR

µR = Q

µF = µR

Q/2 < µR < 2Q

µ−

q

φM(x, Q0) ∝
√

x(1− x)

ψM(x, k2
⊥)

µR

µR = Q

µF = µR

Q/2 < µR < 2Q

µ−

ψM (x, k⊥) =
4π

κ
√

x(1− x
e
− k2

⊥
2κ2x(1−x)

κ = 0.375 GeV

massless quarks

89
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Second Moment of  Pion Distribution Amplitude

< ξ2 >=
∫ 1

−1
dξ ξ2φ(ξ)

ξ = 1− 2x

φasympt ∝ x(1− x)
φAdS/QCD ∝

√
x(1− x)

Braun et al.

Donnellan et al.

< ξ2 >π= 1/5 = 0.20

< ξ2 >π= 1/4 = 0.25

Lattice (I) < ξ2 >π= 0.28± 0.03

Lattice (II) < ξ2 >π= 0.269± 0.039
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0 0.2 0.4 0.6 0.8 1
x

0

0.5

1

1.5

2
φ π(x

)

Linear potential(m=0.22 GeV,β=0.3659 GeV)

HO potential(m=0.25 GeV,β=0.3194 GeV)

φ
as

(x)~x(1-x)

φ
AdS/CFT

(x)~[x(1-x)]
1/2

φ(x, Q0) ∝
√

x(1− x)

pp→ ppJ/ψ

pp→ pΛcD

pp→ γγ

PQCD: No handbag dominance
for real photons

J = 0 fixed pole from
local qq → γγ interactions

AdS/CFT :

φasympt ∼ x(1− x)
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shown in Fig. 1. The corresponding predictions for !R and

!MS using the CSRs at NLO are also shown. Note that for

low Q2 the couplings, although frozen, are large. Thus the

NLO and higher-order terms in the CSRs are large, and in-

verting them perturbatively to NLO does not give accurate

results at low scales. In addition, higher-twist contributions

to !V and !R , which are not reflected in the CSR relating

them, may be expected to be important for low Q2 "35#.
It is clear that exclusive processes such as the pion and

photon to pion transition form factors can provide a valuable

window for determining the magnitude and the shape of the

effective charges at quite low momentum transfers. In par-

ticular, we can check consistency with the !V prediction

from lattice gauge theory. A complimentary method for de-

termining !V at low momentum is to use the angular anisot-

ropy of e!e"→QQ̄ at the heavy quark thresholds "36#. It
should be emphasized that the parametrization $18% is just an
approximate form. The actual behavior of !V(Q

2) at low Q2

is one of the key uncertainties in QCD phenomenology. In

this paper we shall use exclusive observables to deduce in-

formation on this quantity.

IV. APPLICATIONS

As we have emphasized, exclusive processes are sensitive

to the magnitude and shape of the QCD couplings at quite

low momentum transfer: QV
*2!e"3Q2!Q2/20 and

QR
*2!Q2/50 "37#. The fact that the data for exclusive pro-

cesses such as form factors, two photon processes such as

&&→'!'", and photoproduction at fixed (c .m . are consis-
tent with the nominal scaling of the leading-twist QCD pre-

dictions $dimensional counting% at momentum transfers Q up

to the order of a few GeV can be immediately understood if

the effective charges !V and !R are slowly varying at low

momentum. The scaling of the exclusive amplitude then fol-

lows that of the subprocess amplitude TH with effectively

fixed coupling. Note also that the Sudakov effect of the end-

point region is the exponential of a double log series if the

coupling is frozen, and thus is strong.

In Fig. 2, we compare the recent CLEO data "38# for the
photon to pion transition form factor with the prediction

Q2F&'$Q2%#2 f '" 1"
5

3

!V$e"3/2Q %

' # . $19%

The flat scaling of the Q2F&'(Q
2) data from Q2#2 to

Q2#8 GeV2 provides an important confirmation of the ap-

plicability of leading twist QCD to this process. The magni-

tude of Q2F&'(Q
2) is remarkably consistent with the pre-

dicted form assuming the asymptotic distribution amplitude

and including the LO QCD radiative correction with

!V(e
"3/2Q)/'!0.12. Radyushkin "39#, Ong "40# and Kroll

"41# have also noted that the scaling and normalization of the
photon-to-pion transition form factor tends to favor the

asymptotic form for the pion distribution amplitude and rules

out broader distributions such as the two-humped form sug-

gested by QCD sum rules "42#. One cannot obtain a unique
solution for the non-perturbative wave function from the F'&
data alone. However, we have the constraint that

1

3
$ 1

1"x
% &1"

5

3

!V$Q*%

' '!0.8 $20%

"assuming the renormalization scale we have chosen in Eq.
$13% is approximately correct#. Thus one could allow for

some broadening of the distribution amplitude with a corre-

sponding increase in the value of !V at low scales.

In Fig. 3 we compare the existing measurements of the

space-like pion form factor F'(Q
2) "43,44# $obtained from

the extrapolation of &*p→'!n data to the pion pole% with
the QCD prediction $10%, again assuming the asymptotic
form of the pion distribution amplitude. The scaling of the

FIG. 1. The coupling function !V(Q
2) as given in Eq. $18%.

Also shown are the corresponding predictions for !MS̄ and !R fol-

lowing from the NLO commensurate scale relations "Eqs. $2% and
$9%#.

FIG. 2. The &→'0 transition form factor. The solid line is the

full prediction including the QCD correction "Eq. $19%#; the dotted
line is the LO prediction Q2F&'(Q

2)#2 f ' .

FIG. 3. The space-like pion form factor.
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Increases PQCD leading twist prediction for
Fπ(Q2) by factor 16/9

φasymptotic ∝ x(1− x)

φ(x, Q0) ∝
√

x(1− x)

pp→ ppJ/ψ

pp→ pΛcD

pp→ γγ

PQCD: No handbag dominance
for real photons

J = 0 fixed pole from
local qq → γγ interactions

AdS/CFT :

Oberwölz

Π(Q2) = α
5π

Q2

m2
e

Q2 << 4m2
e

Π(Q2) ∝ Q2

m2
g

Q2 << 4m2
g

Increases PQCD leading twist prediction for
Fπ(Q2) by factor 16/9

where !M(x ,Q̃) is the process-independent meson distribu-

tion amplitude, which encodes the non-perturbative dynam-

ics of the bound valence Fock state up to the resolution scale

Q̃ , and

TH"x ,y ,Q2#!
16$CF%s"&#

"1"x #"1"y #Q2 '1#O"%s#( "6#

is the leading-twist perturbatively-calculable subprocess am-

plitude )*q(x) q̄ (1"x)→q(y) q̄ (1"y), obtained by re-

placing the incident and final mesons by valence quarks col-

linear up to the resolution scale Q̃ . The contributions from

non-valence Fock states and the correction from neglecting

the transverse momentum in the subprocess amplitude from

the non-perturbative region are higher twist, i.e., power-law

suppressed. The transverse momenta in the perturbative do-

main lead to the evolution of the distribution amplitude and

to NLO corrections in %s . The contribution from the end-

point regions of integration, x*1 and y*1, are power-law
and Sudakov suppressed and thus can only contribute correc-

tions at higher order in 1/Q '4(.
The distribution amplitude !(x ,Q̃) is boost and gauge

invariant and evolves in lnQ̃ through an evolution equation

'4(. It can be computed from the integral over transverse

momenta of the renormalized hadron valence wave function

in the light-cone gauge at fixed light-cone time '4(:

!"x ,Q̃ #!! d2k!!+" Q̃2"
k!!
2

x"1"x #
#,"Q̃ #"x ,k!!#. "7#

The physical pion form factor must be independent of the

separation scale Q̃ . The natural variable in which to make
this separation is the light-cone energy, or equivalently the

invariant mass M2!k!!
2 /x(1"x), of the off-shell partonic

system '20,4(. Any residual dependence on the choice of Q̃
for the distribution amplitude will be compensated by a cor-
responding dependence of the NLO correction in TH . How-
ever, the NLO prediction for the pion form factor depends
strongly on the form of the pion distribution amplitude as
well as the choice of renormalization scale & and scheme.
It is straightforward to obtain the commensurate scale re-

lation between F$ and %V following the procedure outlined
above. The appropriate BLM scale for F$ is determined
from the explicit calculations of the NLO corrections given
by Dittes and Radyushkin '21( and Field et al. '22(. These
may be written in the form 'A(&)n f#B(&)(%s /$ , where A
is independent of the separation scale Q̃ . The n f dependence
allows one to uniquely identify the dependence on -0, which
is then absorbed into the running coupling by a shift to the

BLM scale Q*!e3A(&)& . An important check of self-

consistency is that the resulting value for Q* is independent
of the choice of the starting scale & .
Combining this result with the BLM scale-fixed expres-

sion for %V , and eliminating the intermediate coupling, we

find

F$"Q2#!!
0

1

dx!$"x #!
0

1

dy!$"y #
16$CF%V"QV#

"1"x #"1"y #Q2" 1#CV

%V"QV#

$ #
!"4!

0

1

dx!$"x #!
0

1

dy!$"y #V"QV
2 #" 1#CV

%V"QV#

$ # , "8#

where CV!"1.91 is the same coefficient one would obtain
in a conformally invariant theory with -!0, and

QV
2.(1"x)(1"y)Q2. In this analysis we have assumed

that the pion distribution amplitude has the asymptotic form

!$!!3 f $x(1"x), where the pion decay constant is f $$93
MeV. In this simplified case the distribution amplitude does

not evolve, and there is no dependence on the separation

scale Q̃ . This commensurate scale relation between F$(Q
2)

and /%V(QV)0 represents a general connection between the
form factor of a bound-state system and the irreducible ker-

nel that describes the scattering of its constituents.

Alternatively, we can express the pion form factor in

terms of other effective charges such as the coupling %R(!s)
that defines the QCD radiative corrections to the e#e"→X

cross section: R(s).31eq
2'1#%R(!s)/$( . The CSR be-

tween %V and %R is

%V"QV#!%R"QR#" 1"
25

12

%R

$
#••• # , "9#

where the ratio of commensurate scales to this order is

QR /QV!e23/12"223$0.614.
If we expand the QCD coupling about a fixed point in

NLO '10(: %s(QV)$%s(Q0)'1"„-0%s(Q0)/2$…ln(QV /Q0)(,
then the integral over the effective charge in Eq. "8# can be
performed explicitly. Thus, assuming the asymptotic distri-

bution amplitude, the pion form factor at NLO is

Q2F$"Q2#!16$ f$
2%V"Q*#" 1"1.91

%V"Q*#

$ # , "10#

where Q*!e"3/2Q . In this approximation lnQ*2

!/ln(1"x)(1"y)Q20, in agreement with the explicit calcula-
tion. A striking feature of this result is that the physical scale

controlling the meson form factor in the %V scheme is very

low: e"3/2Q$0.22Q , reflecting the characteristic momentum
transfer experienced by the spectator valence quark in

lepton-meson elastic scattering.

We may also determine the renormalization scale of %V

for more general forms of the coupling by direct integration

over x and y in Eq. "8#, assuming a specific analytic form for

57 247OPTIMAL RENORMALIZATION SCALE AND SCHEME . . .

Lepage, sjb C. Ji, A. Pang, D. Robertson, sjb

Increases PQCD leading twist prediction for
Fπ(Q2) by factor 16/9

φasymptotic ∝ x(1− x)

Normalized to fπ

Choi,   Ji
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Hadronization at the Amplitude Level

e+

e−

γ∗

g

q̄

q

pp → p + J/ψ + p

e+

e−

γ∗

g

q̄

q

pp → p + J/ψ + p

e+

e−

γ∗

g

q̄

q

pp → p + J/ψ + p

e+

e−

γ∗

g

q̄

q

pp → p + J/ψ + p

e+

e−

γ∗

g

q̄

q

pp → p + J/ψ + p

e+

e−

γ∗

g

q̄

q

pp → p + J/ψ + p

ψ(x,"k⊥, λi)

e+

e−

γ∗

g

q̄

q

ψH(x,"k⊥, λi)

pH

x,"k⊥

1− x,−"k⊥

e+

e−

γ∗

ψH(x,"k⊥, λi)

pH

x,"k⊥

1− x,−"k⊥

e+

e−

γ∗

ψH(x,"k⊥, λi)

pH

x,"k⊥

1− x,−"k⊥

e+

e−

γ∗

ψH(x,"k⊥, λi)

pH

x,"k⊥

1− x,−"k⊥

τ = x+

e+

e−

Event amplitude 
generator

AdS/QCD 
Hard Wall 

Capture if ζ2 = x(1− x)b2
⊥ > 1

Λ2
QCD

i.e.,
M2 = k2

⊥
x(1−x) < Λ2

QCD

93



 
AdS/QCD  Stan Brodsky 

 SLAC & IPPP
Landau Congress

Moscow,  June 20, 2008 94

x (1− x) !b⊥

ψ(x,!b⊥) = ψ(ζ)

φ(z)

ζ =
√

x(1− x)!b2⊥

z

z∆

z0 = 1
ΛQCD

x (1− x) !b⊥

ψ(x,!b⊥) = ψ(ζ)

φ(z)

ζ =
√

x(1− x)!b2⊥

z

z∆

z0 = 1
ΛQCD

x (1− x) !b⊥

ψ(x,!b⊥) = ψ(ζ)

φ(z)

ζ =
√

x(1− x)!b2⊥

z

z∆

z0 = 1
ΛQCD

ψ(x,"b⊥) = ψ(ζ)

φ(z)

ζ =
√

x(1− x)"b2⊥

z

z∆

z0 = 1
ΛQCD

γd→ np

gu→ γu

pp→ γX

E dσ
d3p

(pp→ γX) = F (θcm,xT )
p4
T

− d
dζ2 ≡

k2
⊥

x(1−x)

Conjecture for massive quarks

− d
dζ2 → − d

dζ2 + m2
a

x +
m2

b
1−x ≡

k2
⊥+m2

a
x +

k2
⊥+m2

b
1−x

LF Kinetic Energy in 
momentum space 

Holographic Variable

u↓(x)
u↑(x)

∼ (1− x)2

Q2(GeV2)

[
− d2

d2ζ
+ V (ζ)

]
φ(ζ) =M2φ(ζ)

[
− d2

dζ2 + V (ζ)
]
φ(ζ) =M2φ(ζ)

ζ2 = x(1− x)b2
⊥.

#L = #P × #R

Assume LFWF is a dynamical function of the  
quark-antiquark invariant mass squared

− d

dζ2
→ − d

dζ2
+

m2
1

x
+

m2
2

1− x
≡ k2

⊥ + m2
1

x
+

k2
⊥ + m2

2

1− x

de Teramond, sjbm1

m2
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ψ(x,b⊥) =
cκ√

π

√
x(1− x) e

− 1
2κ2x(1−x)b2

⊥−
1

2κ2

»
m2

1
x −

m2
2

1−x

–

ψ(x,k⊥) =
4πc

κ
√

x(1− x)
e
− 1

2κ2

„
k2
⊥

x(1−x)+
m2

1
x +

m2
2

1−x

«

z → ζ → χ

χ2 = b2x(1− x) +
1
κ4

[
m2

1

x
+

m2
2

1− x
]

Result:  Soft-Wall LFWF  for massive constituents  

LF WF  in  impact space: soft-wall model 
with massive quarks 

+
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ü

J êY: m1 = 1.25 GeV, m2 = 0

In[13]:=

Plot3D@psi@x, b, 1.25, 1.25, 0.375D, 8x, 0.0001, 0.9999<,

8b, 0.0001, 25 <, PlotPoints Ø 35, ViewPoint Ø 81.2, 1.4, 0.3<,

AspectRatio Ø 1.1, PlotRange -> 880, 1<, 80, 20<, 80, 0.3<<D
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AdS Heavy Quark Masses.nb 6

LFWF peaks at 

xi = m⊥iPn
j m⊥j

where
m⊥i =

√
m2 + k2

⊥

J/ψ

ma = mb = 1.25 GeV

x

ψJ/ψ(x, b)
b[GeV−1]

minimum of LF 
energy 

denominator 

κ = 0.375 GeV

96



 

2

where c is the dimensionless normalization factor

c−2 =
∫ 1

0
dx e

− 1
κ2

„
m2

1
x +

m2
2

1−x

«

. (5)

The Fourier transform of (4) is the impact space LFWF

ψ̃(x,b⊥) =
c κ√

π

√
x(1− x) e−

1
2 κ2χ2

, (6)

where the invariant quantity χ is

χ2 = x(1− x)b2
⊥ +

1
κ4

[
m2

1

x
+

m2
2

1− x

]
. (7)

Impact space holographic LFWFs for the π, K, D, ηc, B
and ηb mesons are depicted in Fig. 1.

The non-perturbative input to hard exclusive processes
and heavy hadron decays can be computed in terms of
gauge invariant hadronic distribution amplitudes (DAs),
which describe the momentum-fraction distribution of
partons at zero transverse impact distance in a Fock
state with a fixed number of constituents. The me-
son DA is computed from the transverse integral of the
valence quark light-front wavefunction in the light-cone
gauge [17]

φM (x,Q) =
∫ k2

⊥<Q2
d2k⊥
16π3

ψM (x,k⊥), (8)

and thus φ(x) ≡ φ(x,Q → ∞) → ψ̃(x,b⊥ → 0)/
√

4π.
From (6) we obtain the holographic distribution ampli-
tude φ(x)

φM (x) =
c κ

2π

√
x(1− x) e

− 1
2κ2

»
m2

1
x +

m2
2

1−x

–

, (9)

in the soft wall model. The distribution amplitudes for
the π, K, D, ηc, mesons are shown in Fig. 2. Predictions
for the first and second moment of the meson distribution
amplitude

〈ξN 〉M =

∫ 1
−1 ξNφM (ξ)
∫ 1
−1 φM (ξ)

, (10)

and comparison with available lattice computations are
given on Table I . In the chiral limit, the AdS distribu-
tion amplitude φAdS(x) ∼

√
x(1− x) gives for the second

moment 〈ξ2〉AdS → 1/4, compared with the asymptotic
value 〈ξ2〉PQCD → 1/5 from the PQCD asymptotic DA
φPQCD(x) ∼ x(1− x) [17] .

...............

III. PARTONIC MASS SHIFT

We compute the partonic mass shift contribution to a
meson due to the constituents quark masses [21]

M2 =M2
massless +

〈
m2

1

x

〉
+

〈
m2

2

1− x

〉
, (11)

FIG. 1: Two-parton flavored meson holographic LFWF
ψ(x,b⊥): (a) |π+〉 = |ud〉, (b) |K+〉 = |us〉, (c) |D+〉 = |cd〉,
(d) |ηc〉 = |cc〉, (e) |B+〉 = |ub〉 and (f) |ηb〉 = |bb〉. Values
for the quark masses used are mu = 2 MeV, md = 5 MeV,
ms = 95 Mev, mc = 1.25 GeV and mb = 4.2 GeV. The value
of κ = 0.375 GeV is extracted from the pion form factor [16].

for the holographic LFWF (4). Results for the partonic
mass shift contribution ∆M =

(
M2 −M2

massless

)1/2 are
compared with hadronic masses on Table II.

.....

IV. CONCLUSIONS

..........

|π+ >= |ud̄ > |K+ >= |us̄ >

|D+ >= |cd̄ >

|ηb >= |bb̄ >

|ηc >= |cc̄ >

mu = 2 MeV
md = 5 MeV

ms = 95 MeV

mc = 1.25 GeV

mb = 4.2 GeV

κ = 375 MeV

b[GeV−1]

x

|B+ >= |ub̄ >
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Baryons in 
Ads/CFT

2 Fermionic Modes

From Nick Evans

• Baryons Spectrum in ”bottom-up” holographic QCD

GdT and Brodsky: hep-th/0409074, hep-th/0501022.

• Conformal metric x! = (xµ, z):

ds2 = g!mdx!dxm

=
R2

z2
(ηµνdxµdxν − dz2).

• Action for massive fermionic modes on AdSd+1:

S[Ψ,Ψ] =
∫

dd+1x
√

g Ψ(x, z)
(
iΓ!D! − µ

)
Ψ(x, z).

• Equation of motion:
(
iΓ!D! − µ

)
Ψ(x, z) = 0

[
i

(
zη!mΓ!∂m +

d

2
Γz

)
+ µR

]
Ψ(x!) = 0.

Helmholtz Institut, Bonn, Oct 16, 2007 Page 20
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I = 1/2 I = 3/2

0 2
L

4 60 2
L

4 6

2

0

4

6

8

N (939)

N (1520)

N (2220)N (1535)

N (1650)

N (1675)

N (1700)

N (1680)

N (1720)

N (2190)

N (2250)

N (2600)

! (1232)

! (1620)

! (1905)

! (2420)

! (1700)

! (1910)

! (1920)

! (1950)

(b)(a)

(G
e
V

2
)

! (1930)

5656

7070

1-2006
8694A14 

Fig: Light baryon orbital spectrum for ΛQCD = 0.25 GeV in the HW model. The 56 trajectory corresponds to L

even P = + states, and the 70 to L odd P = − states.

Exploring QCD, Cambridge, August 20-24, 2007 Page 48
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SU(6) S L Baryon State

56 1
2 0 N 1

2

+(939)
3
2 0 ∆ 3

2

+(1232)

70 1
2 1 N 1

2

−(1535) N 3
2

−(1520)
3
2 1 N 1

2

−(1650) N 3
2

−(1700) N 5
2

−(1675)
1
2 1 ∆ 1

2

−(1620) ∆ 3
2

−(1700)

56 1
2 2 N 3

2

+(1720) N 5
2

+(1680)
3
2 2 ∆ 1

2

+(1910) ∆ 3
2

+(1920) ∆ 5
2

+(1905) ∆ 7
2

+(1950)

70 1
2 3 N 5

2

−
N 7

2

−

3
2 3 N 3

2

−
N 5

2

−
N 7

2

−(2190) N 9
2

−(2250)
1
2 3 ∆ 5

2

−(1930) ∆ 7
2

−

56 1
2 4 N 7

2

+
N 9
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3
2 4 ∆ 5

2

+ ∆ 7
2
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2

+ ∆ 11
2
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2 5 N 9
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−
N 11
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3
2 5 N 7

2

−
N 9

2

−
N 11

2

−
N 13

2

−
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Space-Like Dirac Proton Form Factor

• Consider the spin non-flip form factors

F+(Q2) = g+

∫
dζ J(Q, ζ)|ψ+(ζ)|2,

F−(Q2) = g−

∫
dζ J(Q, ζ)|ψ−(ζ)|2,

where the effective charges g+ and g− are determined from the spin-flavor structure of the theory.

• Choose the struck quark to have Sz = +1/2. The two AdS solutions ψ+(ζ) and ψ−(ζ) correspond

to nucleons with Jz = +1/2 and−1/2.

• For SU(6) spin-flavor symmetry

F p
1 (Q2) =

∫
dζ J(Q, ζ)|ψ+(ζ)|2,

Fn
1 (Q2) = −1

3

∫
dζ J(Q, ζ)

[
|ψ+(ζ)|2 − |ψ−(ζ)|2

]
,

where F p
1 (0) = 1, Fn

1 (0) = 0.

Exploring QCD, Cambridge, August 20-24, 2007 Page 52
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• Scaling behavior for large Q2: Q4F p
1 (Q2)→ constant Proton τ = 3

0

0.4

0.8

1.2

0 10 20 30

Q2  (GeV2)

Q
4
F

p 1
 (

Q
2
) 

(G
e

V
4
)

9-2007

8757A2

SW model predictions for κ = 0.424 GeV. Data analysis from: M. Diehl et al. Eur. Phys. J. C 39, 1 (2005).

Helmholtz Institut, Bonn, Oct 16, 2007 Page 29
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Dirac Neutron Form Factor

(Valence Approximation)

Q4Fn
1 (Q2) [GeV4]

1 2 3 4 5 6
-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

Q2 [GeV2]

Prediction for Q4Fn
1 (Q2) for ΛQCD = 0.21 GeV in the hard wall approximation. Data analysis from

Diehl (2005).

CAQCD, Minneapolis, May 11-14, 2006 Page 29103

Truncated Space Confinement

103
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0 1 2 3 4 5 6
0

0.5

1

1.5

2

Untitled-1 1

Spacelike Pauli Form Factor

F2(Q2)

Q2(GeV2)

JADE determination of αs(MZ)

M =
∫

TH ×Πφi

M ∼ f(θCM)
QNtot−4

∑
initial λ

H
i =

∑
final λ

H
j

Harmonic Oscillator 
Confinement

Normalized to anomalous 
moment

F p
2 (Q2)

κ = 0.49 GeV

G. de Teramond, sjb 

Preliminary
From overlap of L = 1 and L = 0 LFWFs
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Prediction from AdS/CFT: Meson LFWF
ψ(x, k⊥)

ψ(x, k⊥)

0.20.40.60.8

1.3

1.4

1.5

0

0.05

0.1

0.15

0.2

0

5

       “Soft Wall” 
model

(GeV)

de Teramond, sjb
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φM(x, Q0) ∝
√

x(1− x)

ψM(x, k2
⊥)

µR

µR = Q

µF = µR

Q/2 < µR < 2Q

µ−
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Hadron Distribution Amplitudes

• Fundamental gauge invariant non-perturbative input to 
hard exclusive processes, heavy hadron decays. Defined 
for Mesons, Baryons

• Evolution Equations from PQCD,                             
OPE, Conformal Invariance

• Compute from valence light-front wavefunction in 
light-cone gauge

106

φH(xi, Q)

φM (x,Q) =
∫ Q

d2"k ψqq̄(x,"k⊥)

P+ = P0 + Pz

Fixed τ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

ψ(σ, b⊥)

β = dαs(Q2)
d lnQ2 < 0

u

x

1− x

k2
⊥ < Q2

Lepage, sjb

Lepage, sjb

Frishman,Lepage, Sachrajda, sjb

Peskin Braun

Efremov, Radyushkin Chernyak etal

∑

i

xi = 1
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Prediction from AdS/CFT: Meson LFWF

ψ(x, k⊥)
0.20.40.60.8

1.3

1.4

1.5

0

0.05

0.1

0.15

0.2

0

5

       “Soft Wall” 
model

ψ(x, k⊥)(GeV)

de Teramond, sjb
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φM(x, Q0) ∝
√

x(1− x)

µR

µR = Q

µF = µR

Q/2 < µR < 2Q

µ−

q

φM(x, Q0) ∝
√

x(1− x)

ψM(x, k2
⊥)

µR

µR = Q

µF = µR

Q/2 < µR < 2Q

µ−

κ = 0.375 GeV

massless quarks

ψM (x, k⊥) =
4π

κ
√

x(1− x)
e
− k2

⊥
2κ2x(1−x)

107



 
AdS/QCD  Stan Brodsky 

 SLAC & IPPP
Landau Congress

Moscow,  June 20, 2008 108

-2 -1.5 -1 -0.5 0
0

0.2

0.4

0.6

0.8

1

-10 -8 -6 -4 -2 0
0

0.2

0.4

0.6

0.8

1

Untitled-1 1

Fπ(q2)

q2(GeV 2)

However J/ψ → ρπ

is largest two-body hadron decay

Small value for ψ′ → ρπ

ρ

π

Spacelike pion form factor from AdS/CFT

Fπ(q2)

q2(GeV 2)

However J/ψ → ρπ

is largest two-body hadron decay

Small value for ψ′ → ρπ

ρ

π

Hard Wall: Truncated Space Confinement

Soft Wall: Harmonic Oscillator Confinement

One parameter -  set by pion decay constant

Data Compilation
Baldini, Kloe and Volmer

de Teramond, sjb
See also: Radyushkin 
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ψ(x,k⊥)
HQCD
LF |ψ>=M2|ψ>

Dirac’s Front Form: Fixed τ= t+ z/c

Light-Front Wavefunctions

xi =
k+
i

P+

0 < xi < 1

n∑

i=1
xi = 1Remarkable new insights from AdS/CFT,              

the duality between conformal field theory       
and Anti-de Sitter Space 

Invariant under boosts.   Independent of Pμ

109
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How can we systematically improve AdS/QCD?

AdS/QCD:   Semiclassical model

No Particle Creation

Valence Fock State only

110
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|p,Sz>=∑
n=3

ψn(xi, !k⊥i,λi)|n;k⊥i,λi>|p,Sz>=∑
n=3

Ψn(xi,!k⊥i,λi)|n;!k⊥i,λi>

|p,Sz>=∑
n=3

Ψn(xi,!k⊥i,λi)|n;!k⊥i,λi>

The Light Front Fock State Wavefunctions

Ψn(xi,!k⊥i,λi)

are boost invariant; they are independent of the hadron’s energy
and momentum Pµ.
The light-cone momentum fraction

xi =
k+
i
p+ =

k0i + kzi
P0+Pz

are boost invariant.
n

∑
i
k+
i = P+,

n

∑
i
xi = 1,

n

∑
i

!k⊥i =!0⊥.

sum over states with n=3, 4, ...constituents

Fixed LF time

111

Intrinsic heavy quarks    
s̄(x) != s(x)

φM(x, Q0) ∝
√

x(1− x)

ψM(x, k2
⊥)

µR

µR = Q

µF = µR

Q/2 < µR < 2Q

ep→ eπ+n

Pπ/p " 30%

Violation of Gottfried sum rule

ū(x) #= d̄(x)

Does not produce (C = −) J/ψ,Υ

Produces (C = −) J/ψ,Υ

Same IC mechanism explains A2/3

Mueller: BFKL DYNAMICS    

111
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Light Antiquark Flavor Asymmetry
• Naïve Assumption 

from gluon splitting:

 E866/NuSea (Drell-Yan)

112



 

Heisenberg Matrix 
FormulationLight-Front QCD

Eigenvalues and Eigensolutions give Hadron 
Spectrum and Light-Front wavefunctions

HQCD
LF |Ψh >= M2

h|Ψh >

HQCD
LF =

∑

i

[
m2 + k2

⊥
x

]i + Hint
LF

Fig. 6. A few selected matrix elements of the QCD front form Hamiltonian H"P
!

in LB-convention.

10. For the instantaneous fermion lines use the factor ¼
"

in Fig. 5 or Fig. 6, or the corresponding
tables in Section 4. For the instantaneous boson lines use the factor ¼

#
.

The light-cone Fock state representation can thus be used advantageously in perturbation
theory. The sum over intermediate Fock states is equivalent to summing all x!-ordered diagrams
and integrating over the transverse momentum and light-cone fractions x. Because of the restric-
tion to positive x, diagrams corresponding to vacuum fluctuations or those containing backward-
moving lines are eliminated.

3.4. Example 1: ¹he qqN -scattering amplitude

The simplest application of the above rules is the calculation of the electron—muon scattering
amplitude to lowest non-trivial order. But the quark—antiquark scattering is only marginally more
difficult. We thus imagine an initial (q, qN )-pair with different flavors fOfM to be scattered off each
other by exchanging a gluon.

Let us treat this problem as a pedagogical example to demonstrate the rules. Rule 1: There are
two time-ordered diagrams associated with this process. In the first one the gluon is emitted by the
quark and absorbed by the antiquark, and in the second it is emitted by the antiquark and
absorbed by the quark. For the first diagram, we assign the momenta required in rule 2 by giving
explicitly the initial and final Fock states

!q, qN "" 1

!n
$

%$

!
$!"

b!
$"

(k
&
, #

&
)d!

$"M
(k

&N
, #

&N
)!0" , (3.29)

!q$, qN $"" 1

!n
$

%$
!
$!"

b!
$"

(k$
&
, #$

&
)d!

$"M
(k$

&N
, #$

&N
)!0" , (3.30)

338 S.J. Brodsky et al. / Physics Reports 301 (1998) 299—486

LQCD → HQCD
LF

Hint
LF : Matrix in Fock Space

Physical gauge: A+ = 0

DLCQ: Periodic BC in x−. Discrete k+; frame-independent truncation

113
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number of coupled integral eigenvalue equations, 

- - 

where V is the interaction part of HLC. Diagrammatically, V involves completely 

irreducible interactions--i.e. diagrams having no internal propagators-coupling 

Fock states (Fig. 5). These equations determine the hadronic spectrum and 

xJ= 
: 3 II 

- - 
0 
. . . 

. 

I- . 
1 II 

0 l . . f 

- - IL 7 - - . . . . . . 
Figure 5. Coupled eigenvalue equations for the light-cone wa.vefunctious of a 

pion. 

wave functions. Although the potential is essentially trivial, the many channels 

required to describe an hadronic state make these equations very difficult to solve. 

Nevertheless the first attempts at a direct solution have been made. 

The bulk of the probability for a nonrelativistic system is in a single Fock 

state-e.g. (eE> for positronium, or Ibb) for the r meson. For such systems it 

is useful to replace the full set of multi-channel eigenvalue equations by a single 

equation for the dominant wavefunction. To see how this can be done, note that 

the bound state equation, say for positronium, can be rewritten as two equations 

using the projection operator P onto the subspace spanned by eE states, and its 

complement & E 1 - P: 

Hpp IPs)~ + HPQ IPs)~ = h4” IPs)p 

(29) 

H&p [Ps)~ + HQQ jP& = hf” h)g 

where H~Q E PHQ.. ., and lPsjp E P jPs) . . . . Solving the second of these 

equations for IPs)~ and substituting the result into the first equation, we obtain 

a single equation for the ee or valence part of the positronium state: 

Her [Ps)~ = Al2 IPS)P (30) 
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16 

LIGHT-FRONT SCHRODINGER EQUATION

G.P. Lepage, sjbA+ = 0

Υ→ ggg → d̄X

Υ→ ggg → p̄n̄X

R = Γ(Υ→d̄X)
Γ(Υ→p̄n̄X)

R = C

ū(x) "= d̄(x)

s̄(x) "= s(x)

114



 

HQCD
LF |Ψh >= M2

h|Ψh >

In terms of the hadron four-momentum P =
(P+, P−, !P⊥) with P± = P0 ± P3, the light-
front frame independent Hamiltonian for a
hadronic composite system HQCD

LC = PµPµ =
P−P+− !P2

⊥, has eigenvalues given in terms of
the eigenmass M squared corresponding to
the mass spectrum of the color-singlet states
in QCD,

HQCD
LC |Ψh〉 =M2

h |Ψh〉

Fig. 6. A few selected matrix elements of the QCD front form Hamiltonian H"P
!

in LB-convention.

10. For the instantaneous fermion lines use the factor ¼
"

in Fig. 5 or Fig. 6, or the corresponding
tables in Section 4. For the instantaneous boson lines use the factor ¼

#
.

The light-cone Fock state representation can thus be used advantageously in perturbation
theory. The sum over intermediate Fock states is equivalent to summing all x!-ordered diagrams
and integrating over the transverse momentum and light-cone fractions x. Because of the restric-
tion to positive x, diagrams corresponding to vacuum fluctuations or those containing backward-
moving lines are eliminated.

3.4. Example 1: ¹he qqN -scattering amplitude

The simplest application of the above rules is the calculation of the electron—muon scattering
amplitude to lowest non-trivial order. But the quark—antiquark scattering is only marginally more
difficult. We thus imagine an initial (q, qN )-pair with different flavors fOfM to be scattered off each
other by exchanging a gluon.

Let us treat this problem as a pedagogical example to demonstrate the rules. Rule 1: There are
two time-ordered diagrams associated with this process. In the first one the gluon is emitted by the
quark and absorbed by the antiquark, and in the second it is emitted by the antiquark and
absorbed by the quark. For the first diagram, we assign the momenta required in rule 2 by giving
explicitly the initial and final Fock states

!q, qN "" 1

!n
$

%$

!
$!"

b!
$"

(k
&
, #

&
)d!

$"M
(k

&N
, #

&N
)!0" , (3.29)

!q$, qN $"" 1

!n
$

%$
!
$!"

b!
$"

(k$
&
, #$

&
)d!

$"M
(k$

&N
, #$

&N
)!0" , (3.30)

338 S.J. Brodsky et al. / Physics Reports 301 (1998) 299—486

Fig. 2. The Hamiltonian matrix for a SU(N)-meson. The matrix elements are represented by energy diagrams. Within
each block they are all of the same type: either vertex, fork or seagull diagrams. Zero matrices are denoted by a dot ( ) ).
The single gluon is absent since it cannot be color neutral.

mass or momentum scale Q. The corresponding wavefunction will be indicated by corresponding
upper scripts,

!!""
!#"

(x
#
, k

!
, !

#
) or !!$"

!#"
(x

#
, k

!
, !

#
) . (3.15)

Consider a pion in QCD with momentum P"(P%, P
!
) as an example. It is described by

"# : P$" $
!
!%&
!d[%

!
]"n : x

#
P%, k

!#
#x

#
P
!
, !

#
$!

!#!(x#
, k

!#
, !

#
) , (3.16)

where the sum is over all Fock space sectors of Eq. (3.7). The ability to specify wavefunctions
simultaneously in any frame is a special feature of light-cone quantization. The light-cone
wavefunctions !

!#! do not depend on the total momentum, since x
#
is the longitudinal momentum

fraction carried by the i"# parton and k
!#

is its momentum “transverse” to the direction of the
meson; both of these are frame-independent quantities. They are the probability amplitudes to find
a Fock state of bare particles in the physical pion.

More generally, consider a meson in SU(N). The kernel of the integral equation (3.14) is
illustrated in Fig. 2 in terms of the block matrix &n : x

#
, k

!#
, !

#
"H"n' : x'

#
, k'

!#
, !'

#
$. The structure of this

matrix depends of course on the way one has arranged the Fock space, see Eq. (3.7). Note that most
of the block matrix elements vanish due to the nature of the light-cone interaction as defined in

S.J. Brodsky et al. / Physics Reports 301 (1998) 299—486 333

Heisenberg Matrix 
Formulation

Light-Front QCD

H.C. Pauli  & sjb

DLCQ
Discretized Light-Cone 

Quantization

Eigenvalues and Eigensolutions give Hadron 
Spectrum and Light-Front wavefunctions

DLCQ:  Frame-independent, No fermion doubling; Minkowski Space

HQCD
LF |Ψh >= M2

h|Ψh >
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In terms of the hadron four-momentum P =
(P+, P−, !P⊥) with P± = P0 ± P3, the light-
front frame independent Hamiltonian for a
hadronic composite system HQCD

LC = PµPµ =
P−P+− !P2

⊥, has eigenvalues given in terms of
the eigenmass M squared corresponding to
the mass spectrum of the color-singlet states
in QCD,

HQCD
LC |Ψh〉 =M2

h |Ψh〉

Fig. 6. A few selected matrix elements of the QCD front form Hamiltonian H"P
!

in LB-convention.

10. For the instantaneous fermion lines use the factor ¼
"

in Fig. 5 or Fig. 6, or the corresponding
tables in Section 4. For the instantaneous boson lines use the factor ¼

#
.

The light-cone Fock state representation can thus be used advantageously in perturbation
theory. The sum over intermediate Fock states is equivalent to summing all x!-ordered diagrams
and integrating over the transverse momentum and light-cone fractions x. Because of the restric-
tion to positive x, diagrams corresponding to vacuum fluctuations or those containing backward-
moving lines are eliminated.

3.4. Example 1: ¹he qqN -scattering amplitude

The simplest application of the above rules is the calculation of the electron—muon scattering
amplitude to lowest non-trivial order. But the quark—antiquark scattering is only marginally more
difficult. We thus imagine an initial (q, qN )-pair with different flavors fOfM to be scattered off each
other by exchanging a gluon.

Let us treat this problem as a pedagogical example to demonstrate the rules. Rule 1: There are
two time-ordered diagrams associated with this process. In the first one the gluon is emitted by the
quark and absorbed by the antiquark, and in the second it is emitted by the antiquark and
absorbed by the quark. For the first diagram, we assign the momenta required in rule 2 by giving
explicitly the initial and final Fock states

!q, qN "" 1

!n
$

%$

!
$!"

b!
$"

(k
&
, #

&
)d!

$"M
(k

&N
, #

&N
)!0" , (3.29)

!q$, qN $"" 1

!n
$

%$
!
$!"

b!
$"

(k$
&
, #$

&
)d!

$"M
(k$

&N
, #$

&N
)!0" , (3.30)

338 S.J. Brodsky et al. / Physics Reports 301 (1998) 299—486

Fig. 2. The Hamiltonian matrix for a SU(N)-meson. The matrix elements are represented by energy diagrams. Within
each block they are all of the same type: either vertex, fork or seagull diagrams. Zero matrices are denoted by a dot ( ) ).
The single gluon is absent since it cannot be color neutral.

mass or momentum scale Q. The corresponding wavefunction will be indicated by corresponding
upper scripts,

!!""
!#"

(x
#
, k

!
, !

#
) or !!$"

!#"
(x

#
, k

!
, !

#
) . (3.15)

Consider a pion in QCD with momentum P"(P%, P
!
) as an example. It is described by

"# : P$" $
!
!%&
!d[%

!
]"n : x

#
P%, k

!#
#x

#
P
!
, !

#
$!

!#!(x#
, k

!#
, !

#
) , (3.16)

where the sum is over all Fock space sectors of Eq. (3.7). The ability to specify wavefunctions
simultaneously in any frame is a special feature of light-cone quantization. The light-cone
wavefunctions !

!#! do not depend on the total momentum, since x
#
is the longitudinal momentum

fraction carried by the i"# parton and k
!#

is its momentum “transverse” to the direction of the
meson; both of these are frame-independent quantities. They are the probability amplitudes to find
a Fock state of bare particles in the physical pion.

More generally, consider a meson in SU(N). The kernel of the integral equation (3.14) is
illustrated in Fig. 2 in terms of the block matrix &n : x

#
, k

!#
, !

#
"H"n' : x'

#
, k'

!#
, !'

#
$. The structure of this

matrix depends of course on the way one has arranged the Fock space, see Eq. (3.7). Note that most
of the block matrix elements vanish due to the nature of the light-cone interaction as defined in
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Heisenberg Equation

Light-Front QCD

Use AdS/QCD  basis functions
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Use AdS/CFT orthonormal LFWFs 
as a basis for diagonalizing

the QCD LF Hamiltonian

• Good initial approximant: generates all Fock 
states

• Better than plane wave basis

• DLCQ discretization -- highly successful 1+1

• Use independent HO LFWFs, remove CM 
motion

• Similar to Shell Model calculations

Vary, Harinandrath, Maris, sjb
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Pauli, Hornbostel, Hiller, 
McCartor, sjb
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• Predictions for hadronic spectra, light-front 
wavefunctions, interactions

• Deduce meson and baryon  wavefunctions, 
distribution amplitude, structure function  from 
holographic constraint

• Identification of Orbital Angular Momentum  
Casimir for SO(2):  LF Rotations

• Extension to massive quarks

Holographic Connection 
between LF and AdS/CFT

118
118
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New Perspectives for QCD from AdS/CFT

• LFWFs:  Fundamental frame-independent description of 
hadrons at amplitude level

• Holographic Model from AdS/CFT : Confinement at large 
distances and conformal behavior at short distances

• Model for LFWFs, meson and baryon spectra: many 
applications!

• New basis for diagonalizing Light-Front Hamiltonian

• Physics similar to MIT bag model, but covariant. No 
problem with support 0 < x  < 1.

• Quark Interchange dominant force at short distances

119
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Quark Interchange
(Spin exchange in atom-

atom scattering)

Gluon Exchange
(Van der Waal -- 

Landshoff)
dσ
dt = |M(s,t)|2

sntot−2

M(t, u)interchange ∝ 1
ut2

σ

|b⊥|

ψ(σ, b⊥)

A(σ, b⊥) =
1

2π

∫
dζeiσζÃ(b⊥, ζ)

K+

p

dσ
dt = |M(s,t)|2

sntot−2

M(t, u)interchange ∝ 1
ut2

σ

|b⊥|

K+

p

dσ
dt = |M(s,t)|2

sntot−2

M(t, u)interchange ∝ 1
ut2

σ

|b⊥|

K+

p

dσ
dt = |M(s,t)|2

sntot−2

M(t, u)interchange ∝ 1
ut2

σ

|b⊥|

K+

p

dσ
dt = |M(s,t)|2

sntot−2

M(t, u)interchange ∝ 1
ut2

σ

|b⊥|

K+

p

dσ
dt = |M(s,t)|2

sntot−2

M(t, u)interchange ∝ 1
ut2

σ

|b⊥|

K+

p

dσ
dt = |M(s,t)|2

sntot−2

M(t, u)interchange ∝ 1
ut2

σ

|b⊥|

K+

p

dσ
dt = |M(s,t)|2

sntot−2

M(t, u)interchange ∝ 1
ut2

σ

|b⊥|

K+

p

dσ
dt = |M(s,t)|2

sntot−2

M(t, u)interchange ∝ 1
ut2

σ

|b⊥|

K+

p

u

s

dσ
dt = |M(s,t)|2

sntot−2

M(t, u)interchange ∝ 1
ut2

σ

K+

p

u

s

dσ
dt = |M(s,t)|2

sntot−2

M(t, u)interchange ∝ 1
ut2

σ

K+

p

u

s

dσ
dt = |M(s,t)|2

sntot−2

M(t, u)interchange ∝ 1
ut2

σ

K+

p

u

s

d

dσ
dt = |M(s,t)|2

sntot−2

M(t, u)interchange ∝ 1
ut2

K+

p

g

u

s

d

dσ
dt = |M(s,t)|2

sntot−2

K+

p

g

u

s

d

dσ
dt = |M(s,t)|2

sntot−2
M(t, u)interchange ∝ 1

ut2

M(s, t)gluonexchange ∝ sF (t)

σ

|b⊥|

ψ(σ, b⊥)

A(σ, b⊥) =
1

2π

∫
dζeiσζÃ(b⊥, ζ)

MIT Bag Model (de Tar), large  NC,  (‘t Hooft), AdS/CFT
 all predict dominance of quark interchange:

K+

p

g

u

s

d

dσ
dt = |M(s,t)|2

s2

CIM: Blankenbecler, Gunion, sjb

K+

p

g

u

s

d

dσ
dt = |M(s,t)|2

s2
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AdS/CFT explains why  
quark interchange is 

dominant 
interaction at high 
momentum transfer 

in exclusive reactions

Non-linear Regge behavior:

αR(t)→ −1

z = ζ

κ4

β = 0

B(0) = 0 Fock-state-by-Fock state

qR,L = qx ± iqy

ψ(x, b⊥)

121

dσ
dt = |M(s,t)|2

sntot−2

M(t, u)interchange ∝ 1
ut2

σ

|b⊥|

ψ(σ, b⊥)

A(σ, b⊥) =
1

2π

∫
dζeiσζÃ(b⊥, ζ)

Quark Interchange

121
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• AdS/CFT:  Duality between string theory in  Anti-de 
Sitter Space and  Conformal Field Theory

• New Way to Implement Conformal Symmetry

• Holographic Model: Conformal Symmetry at Short 
Distances, Confinement at large distances

• Remarkable predictions for hadronic spectra, 
wavefunctions, interactions

• AdS/CFT provides novel insights into the quark 
structure of hadrons

New Perspectives on QCD 
Phenomena from AdS/CFT

123
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Hadron Dynamics at the 
Amplitude Level

• LFWFS are the universal hadronic amplitudes which 
underlie structure functions, GPDs, exclusive processes, 
distribution amplitudes, direct subprocesses, 
hadronization.

• Relation of spin, momentum, and other distributions to  
physics of the hadron itself.

• Connections between observables, orbital angular 
momentum

• Role of FSI and ISIs: Diffractive DIS, Sivers effect

124
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Conventional wisdom:  
Final-state interactions of struck quark can be neglected
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Final-State QCD 
Interaction
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T-OddPseudo-

11-2001 
8624A06

S

current 
quark jet

final state 
interaction

spectator 
system

proton

e– 

!*

e– 

quark

Single-spin 
asymmetries

Leading Twist 
Sivers Effect

!Sp ·!q×!pq

 Hwang,  
Schmidt, sjb

Light-Front Wavefunction  
S and P- Waves

QCD S- and P-
Coulomb Phases

--Wilson Line

126

i

Collins, Burkardt
Ji, Yuan
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N.C.R. Makins, NNPSS, July 28, 2006

0

0.05

0.1

0.15

0.1 0.2 0.3

x

VM
 fr

ac
tio

n

!
+

0.2 0.3 0.4 0.5 0.6

z
0.2 0.4 0.6 0.8 1

Ph⊥
 [GeV]

PYTHIA6

modified by HERMES

0

0.05

0.1

0.15

0.1 0.2 0.3

!
-

0.2 0.3 0.4 0.5 0.6 0.2 0.4 0.6 0.8 1

• First evidence for non-zero 
Sivers function!

• ⇒ presence of non-zero quark

orbital angular momentum!

• Positive for !+... 

Consistent with zero for !"...

• Systematic error bands include 

acceptance and smearing effects, 

and contributions from unpolarized 

<cos(2!)> and    <cos(!)>  moments 

It exists too!
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The Leading-Twist Sivers Function: Can it Exist in DIS?

A T-odd function like f⊥1T must arise from
interference ... but a distribution function

is just a forward scattering amplitude,
how can it contain an interference?

q

P

2

~
q q

P P

Im

Brodsky, Hwang, & Schmidt 2002

can interfere

with

and produce
a T-odd effect!

(also need Lz != 0)

It looks like higher-twist ... but no , these are soft gluons
= “gauge links” required for color gauge invariance

Such soft-gluon reinteractions with the soft wavefunction are

final (or initial) state interactions ... and may be

process dependent ! new universality issues e.g. Drell-Yan

Gamberg: Hermes
data compatible with BHS 

model

Schmidt, Lu: Hermes
charge pattern follow quark 
contributions to anomalous 

moment
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In the context of the quark-parton model, the virtual-photon asymmetry Ah
UT can be

represented in terms of parton distribution and fragmentation functions [7]:

Ah
UT (φ, φS) ∝ sin(φ + φS)

∑

q

e2
q I

[
hq

1T (x, p2
T ) H⊥,q

1 (z, k2
T )

]

+ sin(φ − φS)
∑

q

e2
q I

[
f⊥,q

1T (x, q2
T ) Dq

1(z, k
2
T )

]
+ . . . (3)

Here eq is the charge of the quark species q, f⊥,q
1T (x, q2

T ) the Sivers distribution func-
tion, H⊥,q

1 (z, k2
T ) the Collins fragmentation function, hq

1T (x, p2
T ) a twist-2 relative of the

transversity distribution function [7] and Dq
1(z, k

2
T ) is the usual unpolarized fragmentation

function.
The appearance in Eq. 3 of the convolution integral I[. . .] over initial (pT ) and final

(kT ) quark transverse momenta implies that the different functions involved can not be
readily extracted in a model-independent way from the measured asymmetry. It is under
theoretical debate to what extent weighting of the measured asymmetries makes the
involved distribution and fragmentation functions appear factorized.

The data were taken since 2002 using the Hermes forward spectrometer [10] at Desy
in conjunction with a transversely polarized hydrogen target [11]. All presently available
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final results are summarized in Ref. [9], de-
tails of the analysis can be found in Ref. [12].
The kinematics coverage of the measure-
ment is 0.023 < x < 0.4 and 0.2 < z < 0.7,
and the corresponding average values of the
kinematic parameters are 〈x〉 = 0.09, 〈z〉 =
0.36, 〈y〉 = 0.54, 〈Q2〉 = 2.41 GeV2 and
〈Pπ⊥〉 = 0.41 GeV. The x and z-dependence
of the extracted moments is shown in Fig.2.
The statistical correlation in the fit between
the Collins and Sivers harmonic components
ranges between -0.5 and -0.6.

Figure 2. Top (middle) panel: Fitted
virtual-photon Collins (Sivers) moments for
charged pions, as a function of x (left) and z
(right). The error bars represent the statis-
tical uncertainties, the moments have an 8%
scale uncertainty. The bottom panel shows
the relative contribution to the measured
pion yield from exclusive vector meson pro-
duction, based on a Monte Carlo simulation.
The figure was taken from Ref.[9].
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Sivers asymmetry from HERMES

3. INTERPRETATION

The Collins moment for π+, averaged over acceptance, is positive: Aπ+
C = 0.042 ±

0.014stat.. This agrees with expectations for the transversity distributions hq
1(x), derived

from the similarities to the well measured valence helicity distributions g q
1(x) [13], namely

positive hu
1(x) and negative hd

1(x). The acceptance averaged Collins moment for π− is
large and negative, especially at large x: Aπ−

C = −0.076 ± 0.0016stat.. This comes as a
surprise, as neither u nor d flavor dominates π− production and also |hd

1(x)| < |hu
1(x)| is

expected. This observation may be explained if the disfavored Collins function was larger
and opposite in sign, as e.g. suggested by the string fragmentation model of Ref. [14].
Note that little dependence on z is seen for the Collins moments.

The Sivers moments averaged over acceptance are Aπ+
S = 0.034 ± 0.008stat. and Aπ−

S =
−0.004 ± 0.010stat., i.e. positive for π+ and consistent with zero for π−. The former
result is the first indication for the existence of a non-zero Sivers distribution function
f⊥,u

1T . However, this conclusion has to be taken with caution, as presently an unknown
systematic uncertainty has to be attributed to this result, due to the yet unmeasured
asymmetry in the pion yield from exclusive ρ0 production. More data is presently collected
at Hermes, both for semi-inclusive pion and exclusive vector meson production, which
is hoped to allow a firm conclusion on the existence of a non-zero Sivers function.
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In the context of the quark-parton model, the virtual-photon asymmetry Ah
UT can be

represented in terms of parton distribution and fragmentation functions [7]:

Ah
UT (φ, φS) ∝ sin(φ + φS)

∑
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q I
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Here eq is the charge of the quark species q, f⊥,q
1T (x, q2

T ) the Sivers distribution func-
tion, H⊥,q

1 (z, k2
T ) the Collins fragmentation function, hq

1T (x, p2
T ) a twist-2 relative of the

transversity distribution function [7] and Dq
1(z, k

2
T ) is the usual unpolarized fragmentation

function.
The appearance in Eq. 3 of the convolution integral I[. . .] over initial (pT ) and final

(kT ) quark transverse momenta implies that the different functions involved can not be
readily extracted in a model-independent way from the measured asymmetry. It is under
theoretical debate to what extent weighting of the measured asymmetries makes the
involved distribution and fragmentation functions appear factorized.

The data were taken since 2002 using the Hermes forward spectrometer [10] at Desy
in conjunction with a transversely polarized hydrogen target [11]. All presently available
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final results are summarized in Ref. [9], de-
tails of the analysis can be found in Ref. [12].
The kinematics coverage of the measure-
ment is 0.023 < x < 0.4 and 0.2 < z < 0.7,
and the corresponding average values of the
kinematic parameters are 〈x〉 = 0.09, 〈z〉 =
0.36, 〈y〉 = 0.54, 〈Q2〉 = 2.41 GeV2 and
〈Pπ⊥〉 = 0.41 GeV. The x and z-dependence
of the extracted moments is shown in Fig.2.
The statistical correlation in the fit between
the Collins and Sivers harmonic components
ranges between -0.5 and -0.6.

Figure 2. Top (middle) panel: Fitted
virtual-photon Collins (Sivers) moments for
charged pions, as a function of x (left) and z
(right). The error bars represent the statis-
tical uncertainties, the moments have an 8%
scale uncertainty. The bottom panel shows
the relative contribution to the measured
pion yield from exclusive vector meson pro-
duction, based on a Monte Carlo simulation.
The figure was taken from Ref.[9].
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Final-State Interactions Produce 
Pseudo T-Odd  (Sivers Effect)

• Leading-Twist Bjorken Scaling!

• Requires nonzero orbital angular momentum of quark

• Arises from the interference of Final-State QCD                                                  
Coulomb phases in S- and P- waves; Wilson line effect;                       
gauge independent

• Relate to the quark contribution to the target proton                                        
anomalous magnetic moment and final-state QCD phases

• QCD phase at soft scale!

• New window to QCD coupling and running gluon mass in the IR

• QED S and P Coulomb phases infinite -- difference of phases finite!

!S ·!p jet×!q

!S ·!p jet×!qi

11-2001 
8624A06

S

current 
quark jet

final state 
interaction

spectator 
system

proton
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e– 
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Fig. 4. Fraction r of events with a large rapidity gap, 

qmax < 1.5, as a function of Q2 A for two ranges of XDA. No 
acceptance corrections have been applied. 

small compared to WDA and is typically smaller than 

10 GeV. The events span the range of  WDA from 60 

to 270 GeV. For  WDA > 150 GeV these events are 

well separated from the rest of  the sample. In this 

region, acceptance corrections have little dependence 

on W and the contr ibut ion of  these events to the deep 

inelastic cross section is, within errors, constant with 

WDA, as expected for a diffractive type of  interaction 

(see fig. 3b). At smaller values of  WDA, the acceptance 

for these events decreases since the final state hadronic 

system is boosted in the forward direction. 

In fig. 3c we present the dis tr ibut ion of  Mx for 

events with r/max< 1.5 and WOA > 150 GeV. The dis- 

t r ibution is not corrected for detector or acceptance ef- 

fects. Although this acceptance could be model  depen- 

dent, the three models  we have checked [ 13,14,16 ] 

predict  a flat acceptance with Mx for Mx > 4 GeV. 

We observe a spectrum which, given our resolution, 

the uncertainty about the acceptance and the large sta- 

tistical errors, is compat ible  with a 1/MZx dependence,  

shown as the solid curve. 

The fraction of  events with a large rapidi ty gap, pre- 

sented as a function of  Q~A in fig. 4 for two selected 

bins of  XOA, is, within errors, independent  of  Q2. The 

Q2 dependence is little affected by acceptance correc- 

tions. In QCD terminology, leading twist contribu- 

tions to structure functions show little (at most loga- 

r i thmic)  dependence on Q2 at fixed x, whereas higher 

twist terms fall as a power of  Q2. Since the proton 

structure function determined for our DIS data  sam- 

ple shows a leading twist behavior  [29], the produc- 

t ion mechanism responsible for the large rapidity gap 

events is also likely to be a leading twist effect. The 

decrease with x is partly due to acceptance, since for 

larger values of x the final hadronic state is boosted 

in the direction of  the proton so that such events will 

not be identified as having a large rapidi ty  gap in our 

detector. 

8. Discussion and conclusions 

In a sample of  deep inelastic neutral current scatter- 

ing events, we have observed a class of  events with a 

large rapidi ty gap in the final hadronic state. The flat 

rapidi ty  distr ibution,  the lack of  W dependence and 

the shape of  the Mx distr ibution are suggestive of  a 

diffractive interaction between a highly virtual pho- 

ton and the proton, mediated by the exchange of  the 

pomeron [5 ]. The fact that the percentage of  events 

with a large rapidity gap shows only a weak depen- 

dence on Q2 points to a leading twist contribution to 

the proton structure function. 

For  the hypothesis that events with a large rapidi ty 

gap are produced by a diffractive mechanism, one 

expects such events to be accompanied by a quasi- 

elastically scattered proton. For  this type of  pro- 

cess the gap between the maximum rapidity of  the 

calorimeter  and the rapidi ty of  the scattered proton is 

about three units. The selection criteria, in part icular 

the requirement of  a rapidi ty gap in the detector of  

at least 2.8 units, l imit  the acceptance for diffractive- 

like events. Since we have made no corrections for 

acceptance, the 5.4% for DIS events with a large 

rapidity gap should be considered a lower l imit  for 

diffractively produced events. 
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Inclusive Diffraction at HERA

F.-P. Schillinga∗ (on behalf of the H1 and ZEUS collaborations) †

aDESY, Notkestr. 85, D-22603 Hamburg, Germany

New precision measurements of inclusive diffractive deep-inelastic ep scattering interactions, performed by the
H1 and ZEUS collaborations at the HERA collider, are discussed. A new set of diffractive parton distributions,
determined from recent high precision H1 data, is presented.

1. INTRODUCTION

One of the biggest challenges in our under-
standing of QCD is the nature of colour sin-
glet exchange or diffractive interactions. The
electron-proton collider HERA is an ideal place to
study hard diffractive processes in deep-inelastic
ep scattering (DIS). In such interactions, the
point-like virtual photon probes the structure of
colour singlet exchange, similarly to inclusive DIS
probing proton structure.

2

!

Figure 1: Illustration of
a diffractive DIS event.

At HERA,
around 10% of
low x events
are diffractive
[1]. Experimen-
tally, such events
are identified by
either tagging
the elastically
scattered pro-
ton in Roman
pot spectrometers
60− 100 m down-
stream from the
interaction point
or by asking for

a large rapidity gap without particle production
between the central hadronic system and the
proton beam direction.

A diagram of diffractive DIS is shown in Fig. 1.
A virtual photon coupling to the beam electron

∗e-mail address: fpschill@mail.desy.de
†Talk presented at 31st Intl. Conference on High Energy
Physics ICHEP 2002, Amsterdam

interacts diffractively with the proton through
the exchange of a colour singlet and produces a
hadronic system X with mass MX in the final
state. If the 4-momenta of the incoming (out-
going) electron and proton are labeled l (l′) and
p (p′) respectively, the following kinematic vari-
ables can be defined: Q2 = −q2 = −(l − l′)2, the
photon virtuality; β = Q2/q.(p − p′), the longi-
tudinal momentum fraction of the struck quark
relative to the diffractive exchange; xIP = q.(p −
p′)/q.p, the fractional proton momentum taken
by the diffractive exchange and t = (p− p′)2, the
4-momentum squared transferred at the proton
vertex. Bjorken-x is given by x = xIP β. For the
measurements presented here typical values of xIP

are < 0.05. y = Q2/sx denotes the inelasticity,
where s is the ep CMS energy.

A diffractive reduced cross section σD(4)
r can be

defined via

d4σep→eXp

dxIP dt dβ dQ2
=

4πα2

βQ4

(

1 − y +
y2

2

)

σD(4)
r (xIP , t, β, Q2) , (1)

which is related to the diffractive structure func-
tions FD

2 and the longitudinal FD
L by

σD
r = FD

2 −
y2

2(1 − y + y2

2 )
FD

L . (2)

Except at the highest y, σD
r = FD

2 to a very good
approximation. If the outgoing proton is not de-
tected, the measurements are integrated over t:

σD(3)
r =

∫

dt σD(4)
r .

10% to 15% 
of DIS events 

are 
diffractive !

Remarkable observation at HERA
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QCD Mechanism for Rapidity Gaps

Wilson Line: ψ(y)
Z y

0
dx eiA(x)·dx ψ(0)

P

130

Reproduces lab-frame color dipole approach

Hoyer, Marchal, Peigne, Sannino, sjb

130



 
AdS/QCD  Stan Brodsky 

 SLAC & IPPP
Landau Congress

Moscow,  June 20, 2008 131

Feynman Gauge Light-Cone Gauge

Result is Gauge Independent

Final State Interactions in QCD 
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Some Applications of Light-Front Wavefunctions

• Exact formulae for form factors, quark and gluon distributions; 
vanishing anomalous gravitational moment; edm connection to 
anm

• Deeply Virtual Compton Scattering, generalized parton 
distributions, angular momentum sum rules

• Exclusive weak decay amplitudes

• Single spin asymmetries: Role of ISI and FSI

• Factorization theorems, DGLAP, BFKL, ERBL Evolution

• Quark interchange amplitude

• Relation of spin, momentum, and other distributions to  physics of 
the hadron itself.
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FIGURE 10. The matrix element in the integrand of the parton distribution (8), i.e., the handbag diagram of Fig. 8 viewed in
coordinate space (rescattering is not shown). The position of the struck quark differs by x− in the two wave functions (whereas
x+ = x⊥ = 0).

The rhs. of this equation is essentially given by the F2 structure function. Thus we can study the A-dependence of the

parton distribution in coordinate space, defined as

qA(x−,Q2) ≡
∫ 1

0

dxB

xB
FD2 (xB,Q

2)RAF2(xB,Q
2)sin

(

1
2
mxBx

−)

(11)

where RAF2(xB,Q
2) is the experimentally measured ratio of nuclear to deuterium structure functions sketched in Fig. 9.

The corresponding ratio in coordinate space, defined as

RA(x−,Q2) ≡
qA(x−,Q2)

qD(x−,Q2)
(12)

can then be formed using data on structure functions and is shown in Fig. 11a.
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FIGURE 11. (a) The coordinate space ratio RA(x−,Q2) (12) obtained by Fourier transforming data on FA2 (xB,Q
2) structure

functions for A = He, C and Ca. (b) The momentum space ratio R̃C(xB,w,Q2 = 5 GeV2) for Carbon, obtained by Fourier
transforming a modified coordinate space distribution in which all nuclear effects are eliminated for x− < w.

Within the ca. 1% error bars [9] the ratio RA(x−,Q2) is consistent with having no A-dependence for x− <∼ 5 fm. At
longer distances x− > 5 (i.e., t = −z > 2.5 fm since x+ = 0) shadowing sets in. Thus viewed from coordinate space
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Increases PQCD leading twist prediction for
Fπ(Q2) by factor 16/9

φasymptotic ∝ x(1− x)

Normalized to fπ

σ = 1
2x−P+

x−

Space-time picture of  DVCSIncreases PQCD leading twist prediction for
Fπ(Q2) by factor 16/9

φasymptotic ∝ x(1− x)

Normalized to fπ

σ = 1
2x−P+

Measure x- distribution from DVCS: 
Take Fourier transform of skewness, 
the longitudinal momentum transfer 
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dζeiσζÃ(b⊥, ζ)

= 2(2π)4
Λ2

QCD

2π2J1(β0,1)2

∫ 1

0
dζeiσζ

∫ 1

ζ
dx F (x, ζ)

√
x(x− ζ)[J0(X1)J0(X2)]

αs(Q2) # const

Radyushkin

ξ = Q2

2p.q

ψΛ(xi,#k⊥i, λI)

Λ

gu→ γu

pp→ γXσ

|b⊥|

A(σ, b⊥) =
1

2π

∫
dζeiσζÃ(b⊥, ζ)
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String Theory

AdS/CFT

Semi-Classical QCD / Wave Equations

Mapping of  Poincare’ and 
Conformal SO(4,2) symmetries of 3

+1 space 
to  AdS5 space

Integrable!

Boost Invariant 3+1 Light-Front Wave Equations

Hadron Spectra, Wavefunctions, Dynamics

AdS/QCD
Conformal behavior at short 

distances
+ Confinement at large 

distance

Counting rules for Hard 
Exclusive Scattering
Regge Trajectories

Holography

Integrable! J =0,1,1/2,3/2 plus L

Goal: First Approximant to QCD

QCD at the Amplitude Level
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Lev Davidovich Landau

Born January 22, 1908

Baku, Russian Empire

Died April 1, 1968 (aged 60)

Moscow, Soviet Union

Fields Physics

Institutions Kharkiv University

Kharkiv Polytechnical Institute

Institute for Physical Problems

Alma mater Saint Petersburg State University

Doctoral students
Alexei Alexeyevich Abrikosov 

Isaak Markovich Khalatnikov

Known for Superfluidity, superconductivity

Notable awards
Nobel Prize in Physics (1962) 

Lev Landau

From Wikipedia, the free encyclopedia

Lev Davidovich Landau (Russian language: !"#$ 

%&$'#()$'* !&+(&#,) (January 22, 1908 – April 1,

1968) was a prominent Soviet physicist who made

fundamental contributions to many areas of

theoretical physics. His accomplishments include

the co-discovery of the density matrix method in

quantum mechanics, the quantum mechanical

theory of diamagnetism, the theory of

superfluidity, the theory of second order phase

transitions, the Ginzburg-Landau theory of

superconductivity, the explanation of Landau

damping in plasma physics, the Landau pole in

quantum electrodynamics, and the two-component

theory of neutrinos. He received the 1962 Nobel

Prize in Physics for his development of a

mathematical theory of superfluidity that accounts

for the properties of liquid helium II at a

temperature below 2.17 K (!270.98 °C).
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1.4 Death and legacy

2 Landau's list
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4 Some books about Landau
5 See also
6 References
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Biography

Early years

Landau was born January 22, 1908 into a Jewish family in Baku, Azerbaijan. Recognized very early as a

child prodigy in mathematics, Landau was quoted as saying in later life that he scarcely remembered a time

when he was not familiar with calculus. Landau graduated at 13 from gymnasium. His parents regarded
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