AdS/CFT and Hadronic Physics on the Light Front

Lev Davidovich Landau

Stan Brodsky SLAC/IPPP

Landau Memorial Meeting Moscow fune 20, 2008

Landaw's Impact

- International Influence throughout Atomic, Nuclear, Electroweak, High Energy Physics
- Fundamentals of Quantum Field Theory
- CP Invariance, Neutrino Physics
- Renormalization theory, Landau Singularity
- Remarkable Students, Legacy of Russian Schools

Physical Intuition!

Landau Congress
Moscow, June 20, 2008

AdS/QCD
2

Stan Brodsky SLAC \& IPPP

Searching for the Ultimate Constituents

Electrons, Quarks, and Gluons may be truly pointlike! 1 TeV resolves $10^{-19} \mathrm{~m}=0.0001 \mathrm{fm}$

Landau Congress Moscow, June 20, 2008

AdS/QCD
3

Stan Brodsky SLAC \& IPPP

THE PERIODIC TABLE

Leptons		Quarks (each in 3 "colors")		
\boldsymbol{e}	ν_{e}	d	U	
0.511 MeV	<0.000003	7	3	
$\boldsymbol{\mu}$	ν_{μ}	S	C	
106	<0.2	120	1200	
$\boldsymbol{\tau}$	ν_{τ}	b	t	
1777	<20	4300	175,000	
-1	0	$-1 / 3$	$2 / 3$	

γ_{0} photon	"electromagnetism"
$\begin{array}{cc}9 & \text { gluon } \\ 0 & \text { (8 colors") }\end{array}$	"strong interaction"
$\underset{80,420}{W_{91,188}}{ }_{2}^{7}$	"weak interaction"

Landau Congress Moscow, June 20, 2008

> Stan Brodsky SLAC \& IPPP

The World of Quarks and Glwons:

- Quarks and Gluons: Fundamental constituents of hadrons and nuclei
- Remarkable and novel properties of Quantum Chromodynamics (QCD)
- New Insights from higher space-time dimensions: Holography: AdS/CFT

Landau Congress
Moscow, June 20, 2008

AdS/QCD
5

QCD Lagrangian

Yang-Mills Gauge Principle: Invariance under Color Rotation and Phase Change at Every Point of Space and Time

Dimensionless Coupling Renormalizable Asymptotic Freedom Color Confinement

Landau Congress
Moscow, June 20, 2008

AdS/QCD 6

Stan Brodsky SLAC \& IPPP

Only quarks and gluons involve basic vertices: Quark-gluon vertex

Similar to QED

More exactly

Gluon vertices

colored particles couple to gluons

QCD Lagrangian

Analytic limit of QCD: Abelian Gauge Theory

QED: Underlies Atomic Physics, Molecular Physics, Chemistry, Electromagnetic Interactions ...

QCD: Underlies Hadron Physics, Nuclear Physics,
Theoretical Tools:

- Feynman diagrams and perturbation theory, evolution equations
- Bethe Salpeter and Dyson-Schwinger Equations
- Lattice Gauge Theory
- Discretized Light-Front Quantization
- AdS/CFT!

Landau Congress Moscow, June 20, 2008

AdS/QCD
9

Stan Brodsky SLAC \& IPPP

Given the elementary gauge theory interactions, all fundamental processes described in principle!

Example from QED:

Electron gyromagnetic moment - ratio of spin precession frequency to Larmor frequency in a magnetic field

$$
\begin{aligned}
& \frac{1}{2} g_{e}=1.001159652 \text { 201(30) QED prediction (Kinoshita, et al.) } \\
& \frac{1}{2} g_{e}=1.001159652 \text { 193(10) Measurement (Dehmelt, et al.) } \\
& \frac{1}{2} g_{e}=1.00115965218085 \text { [0.76 ppt] } \\
& \text { Dírac: } g_{e} \equiv 2 \\
& \text { Measurement (Gabrielse, et al.) } \\
& \text { Landau Congress } \\
& \text { Moscow, June 20, } 2008 \\
& \text { AdS/QCD } \\
& 10 \\
& \text { Stan Brodsky } \\
& \text { SLAC \& IPPP }
\end{aligned}
$$

QED provides an asymptotic series relating g and α,

$$
\begin{aligned}
\frac{g}{2}= & 1+C_{2}\left(\frac{\alpha}{\pi}\right)+C_{4}\left(\frac{\alpha}{\pi}\right)^{2}+C_{6}\left(\frac{\alpha}{\pi}\right)^{3}+C_{8}\left(\frac{\alpha}{\pi}\right)^{4}+\ldots \\
& +a_{\mu \tau}+a_{\text {hadronic }}+a_{\text {weak }},
\end{aligned}
$$

Light-by-Light Scattering

 Contribution to C_{6}

$$
\begin{aligned}
\alpha^{-1} & =137.035999710(90)(33)[0.66 \mathrm{ppb}][0.24 \mathrm{ppb}], \\
& =137.035999710(96)[0.70 \mathrm{ppb}] .
\end{aligned}
$$

G. Gabrielse, D. Hanneke, T. Kinoshita, M. Nio, and B. Odom, Phys. Rev. Lett. 97, 030802 (2006).

Landau Congress
Moscow, June 20, 2008

AdS/QCD

Stan Brodsky SLAC \& IPPP

In 1959 Landaw and Bjorken developed, independently and simultaneously, the analogy of Feymman graphs to electrical circuit theory and the use of Kirchhoff\& laws to analyze their singularity structure

Light-by-light contribution to

 the muon and electron anomalous magnetic momentsAldins, Dufner, Kinoshita, sjb

Landau Congress
Moscow, June 20, 2008

AdS/QCD
12

Stan Brodsky SLAC \& IPPP

Electron-Electron Scattering in QED

$$
\begin{gathered}
\mathcal{M}_{e e \rightarrow e e}(++;++)=\frac{8 \pi s}{t} \alpha(t)+\frac{8 \pi s}{u} \alpha(u) \\
\alpha(t)=\frac{\alpha(0)}{1-\Pi(t)}
\end{gathered}
$$

Gell Mann-Low Effective Charge

AdS/QCD

Stan Brodsky SLAC \& IPPP

QED One-Loop Vacuum Polarization

$t=-Q^{2}<0$
(t spacelike)
$\Pi\left(Q^{2}\right)=\frac{\alpha(0)}{3 \pi}\left[\frac{5}{3}-\frac{4 m^{2}}{Q^{2}}-\left(1-\frac{2 m^{2}}{Q^{2}}\right) \sqrt{1+\frac{4 m^{2}}{Q^{2}}} \log \frac{1+\sqrt{1+\frac{4 m^{2}}{Q^{2}}}}{\left\lvert\, 1-\sqrt{1+\frac{4 m^{2}}{Q^{2}}}\right.}\right]$
Analytically continue to timelike t: Complex

$$
\begin{aligned}
& \Pi\left(Q^{2}\right)=\frac{\alpha(0)}{15 \pi} \frac{Q^{2}}{m^{2}} \quad Q^{2} \ll 4 M^{2} \quad \text { Serber-Uehling } \\
& \Pi\left(Q^{2}\right)=\frac{\alpha(0)}{3 \pi} \frac{\log Q^{2}}{m^{2}} \quad Q^{2} \gg 4 M^{2} \quad \text { Landau Pole } \\
& \beta=\frac{d\left(\frac{\alpha}{4 \pi}\right)}{d \log Q^{2}}=\frac{4}{3}\left(\frac{\alpha}{4 \pi}\right)^{2} n_{\ell}>0 \\
& \begin{array}{l}
\text { AdS/QCD } \\
\text { ngress } \\
20,2008
\end{array}
\end{aligned}
$$

Landau Congress Moscow, June 20, 2008

QED Effective Charge $\alpha(t)=\frac{\alpha(0)}{1-\Pi(t)}$

All-orders lepton loop corrections to dressed photon propagator

$$
\begin{aligned}
& \alpha(t)=\frac{\alpha\left(t_{0}\right)}{1-\Pi\left(t, t_{0}\right)} \quad \Pi\left(t, t_{0}\right)=\frac{\Pi(t)-\Pi\left(t_{0}\right)}{1-\Pi\left(t_{0}\right)}
\end{aligned}
$$

Initial scale t_{o} is arbitrary -- Variation gives RGE Equations Physical renormalization scale t never arbitrary

Landau Congress Moscow, June 20, 2008

AdS/QCD
15

Stan Brodsky SLAC \& IPPP

Supersymmetric SU(5)

Coupling Unification

Landau Congress Moscow, June 20, 2008

AdS/QCD
17

Stan Brodsky SLAC \& IPPP

Coupling Unification in Nonanalytic $\overline{m s}$ Scheme

Landau Congress
Moscow, June 20, 2008

AdS/QCD
18

Stan Brodsky SLAC \& IPPP

Analytic Coupling Unifícation
Binger, sjb

Landau Congress Moscow, June 20, 2008

AdS/QCD
19

Stan Brodsky SLAC \& IPPP

Lesson from QED:

Use Physical Scheme to Characterize QCD Coupling

- Use Physical Observable to define QCD coupling
- No Renormalization Scale Ambiguity
- Analytic: Smooth behavior as one crosses new quark threshold
- New perspective on grand unification

Binger, Sjb

Landau Congress
AdS/QCD Moscow, June 20, 2008

Stan Brodsky SLAC \& IPPP

Analytic Coupling Unifícation
Binger, sjb

Landau Congress Moscow, June 20, 2008

AdS/QCD 21

Stan Brodsky SLAC \& IPPP

Lesson from QED: Relate Observables to Each other

- Eliminate intermediate scheme
- No scale ambiguity
- Transitive!
- Commensurate Scale Relations
- Example: Generalized Crewther Relation

$$
\begin{gathered}
R_{e^{+} e^{-}}\left(Q^{2}\right) \equiv 3 \sum_{\text {flavors }} e_{q}^{2}\left[1+\frac{\alpha_{R}(Q)}{\pi}\right) . \\
\int_{0}^{1} d x\left[g_{1}^{e p}\left(x, Q^{2}\right)-g_{1}^{e n}\left(x, Q^{2}\right)\right] \equiv \frac{1}{3}\left|\frac{g_{A}}{g_{V}}\right|\left[1-\frac{\alpha_{g_{1}}(Q)}{\pi}\right]
\end{gathered}
$$

Landau Congress Moscow, June 20, 2008

AdS/QCD

Stan Brodsky SLAC \& IPPP

$$
\begin{aligned}
\frac{\alpha_{R}(Q)}{\pi}= & \frac{\alpha_{\overline{\mathrm{MS}}}(Q)}{\pi}+\left(\frac{\alpha_{\overline{\mathrm{MS}}}(Q)}{\pi}\right)^{2}\left[\left(\frac{41}{8}-\frac{11}{3} \zeta_{3}\right) C_{A}-\frac{1}{8} C_{F}+\left(-\frac{11}{12}+\frac{2}{3} \zeta_{3}\right) f\right] \\
& +\left(\frac{\alpha_{\overline{\mathrm{MS}}}(Q)}{\pi}\right)^{3}\left\{\left(\frac{90445}{2592}-\frac{2737}{108} \zeta_{3}-\frac{55}{18} \zeta_{5}-\frac{121}{432} \pi^{2}\right) C_{A}^{2}+\left(-\frac{127}{48}-\frac{143}{12} \zeta_{3}+\frac{55}{3} \zeta_{5}\right) C_{A} C_{F}-\frac{23}{32} C_{F}^{2}\right. \\
& +\left[\left(-\frac{970}{81}+\frac{224}{27} \zeta_{3}+\frac{5}{9} \zeta_{5}+\frac{11}{108} \pi^{2}\right) C_{A}+\left(-\frac{29}{96}+\frac{19}{6} \zeta_{3}-\frac{10}{3} \zeta_{5}\right) C_{F}\right] f \\
& \left.+\left(\frac{151}{162}-\frac{19}{27} \zeta_{3}-\frac{1}{108} \pi^{2}\right) f^{2}+\left(\frac{11}{144}-\frac{1}{6} \zeta_{3}\right) \frac{d^{a b c} d^{a b c}}{C_{F} d(R)} \frac{\left(\sum_{f} Q_{f}\right)^{2}}{\sum_{f} Q_{f}^{2}}\right\} .
\end{aligned}
$$

$$
\begin{aligned}
\frac{\alpha_{g_{1}}(Q)}{\pi}= & \frac{\alpha_{\overline{\mathrm{MS}}}(Q)}{\pi}+\left(\frac{\alpha_{\overline{\mathrm{MS}}}(Q)}{\pi}\right)^{2}\left[\frac{23}{12} C_{A}-\frac{7}{8} C_{F}-\frac{1}{3} f\right] \\
& +\left(\frac{\alpha_{\overline{\mathrm{MS}}}(Q)}{\pi}\right)^{3}\left\{\left(\frac{5437}{648}-\frac{55}{18} \zeta_{5}\right) C_{A}^{2}+\left(-\frac{1241}{432}+\frac{11}{9} \zeta_{3}\right) C_{A} C_{F}+\frac{1}{32} C_{F}^{2}\right. \\
& \left.+\left[\left(-\frac{3535}{1296}-\frac{1}{2} \zeta_{3}+\frac{5}{9} \zeta_{5}\right) C_{A}+\left(\frac{133}{864}+\frac{5}{18} \zeta_{3}\right) C_{F}\right] f+\frac{115}{648} f^{2}\right\}
\end{aligned}
$$

Eliminate MSbar, Find Amazing Simplification

Landau Congress
Moscow, June 20, 2008

AdS/QCD
23

Stan Brodsky SLAC \& IPPP

$$
\begin{gathered}
R_{e^{+} e^{-}}\left(Q^{2}\right) \equiv 3 \sum_{\text {flavors }} e_{q}^{2}\left[1+\frac{\alpha_{R}(Q)}{\pi}\right) \\
\int_{0}^{1} d x\left[g_{1}^{e p}\left(x, Q^{2}\right)-g_{1}^{e n}\left(x, Q^{2}\right)\right] \equiv \frac{1}{3}\left|\frac{g_{A}}{g_{V}}\right|\left[1-\frac{\alpha_{g_{1}}(Q)}{\pi}\right] \\
\frac{\alpha_{g_{1}}(Q)}{\pi}=\frac{\alpha_{R}\left(Q^{*}\right)}{\pi}-\left(\frac{\alpha_{R}\left(Q^{* *}\right)}{\pi}\right)^{2}+\left(\frac{\alpha_{R}\left(Q^{* * *}\right)}{\pi}\right)^{3}
\end{gathered}
$$

Geometric Series in Conformal QCD

Generalized Crewther Relation

Lu, Kataev, Gabadadze, Sjb

Landau Congress
Moscow, June 20, 2008

AdS/QCD
24

Stan Brodsky SLAC \& IPPP

Generalized Crewther Relation

$$
\begin{gathered}
{\left[1+\frac{\alpha_{R}\left(s^{*}\right)}{\pi}\right]\left[1-\frac{\alpha_{g_{1}}\left(q^{2}\right)}{\pi}\right]=1} \\
\sqrt{s^{*}} \simeq 0.52 Q
\end{gathered}
$$

Conformal relation true to all orders in perturbation theory
No radiative corrections to axial anomaly
Nonconformal terms set relative scales (BLM)
Analytic matching at quark tbresholds
No renormalization scale ambiguity!

Landau Congress Moscow, June 20, 2008

AdS/QCD
25

Stan Brodsky SLAC \& IPPP

Deur, Korsch, et al: Effective Charge from Bjorken Sum Rule

Landau Congress Moscow, June 20, 2008

AdS/QCD 26

Stan Brodsky SLAC \& IPPP

Lesson from QED:

 Lamb Shift in Hydrogen$$
\Delta E \sim \alpha(Z \alpha)^{4} \ln (Z \alpha)^{2} m_{e}
$$

$$
\begin{aligned}
& \lambda<\frac{1}{Z \alpha m_{e}} \\
& k>Z \alpha m_{e}
\end{aligned}
$$

Maximum wavelength of bound electron

Infrared divergence of free electron propagator removed because of atomic binding

Landau Congress Moscow, June 20, 2008

AdS/QCD

Stan Brodsky SLAC \& IPPP

Lesson from QED and Lamb Shift:

maximum wavelength of bound quarks and gluons

$\lambda<\Lambda_{\mathrm{QCD}}$

B-Meson

Shrock, sjb
glwon and quark propagators cutoff in IR because of color confinement

Landau Congress Moscow, June 20, 2008

AdS/QCD 28

Stan Brodsky SLAC \& IPPP

Lesson from QED and Lamb Shift:

maximum wavelength of bound quarks and gluons

$\lambda<\Lambda_{\mathrm{QCD}}$

B-Meson

Shrock, sjb

Use Dyson-Schwinger Equation for bound-state quark propagator: find confined condensate

$$
<\bar{b}|\bar{q} q| \bar{b}>\operatorname{not}<0|\bar{q} q| 0>
$$

Landau Congress Moscow, June 20, 2008

AdS/QCD
29

Stan Brodsky SLAC \& IPPP

Lesson from QED and Lamb Shift:

Consequences of Maximum Quark and Glwon Wavelength

- Infrared integrations regulated by confinement
- Infrared fixed point of QCD coupling

$$
\alpha_{s}\left(Q^{2}\right) \text { finite, } \beta \rightarrow 0 \text { at small } Q^{2}
$$

- Bound state quark and gluon Dyson-Schwinger Equation
- Quark and Gluon Condensates exist within hadrons

Landau Congress Moscow, June 20, 2008

AdS/QCD 30

Stan Brodsky SLAC \& IPPP

Determinations of the vacuum Gluon Condensate

$$
<0\left|\frac{\alpha_{s}}{\pi} G^{2}\right| 0>\left[\mathrm{GeV}^{4}\right]
$$

-0.005 ± 0.003 from τ decay. Davier et al. $+0.006 \pm 0.012$ from τ decay. Geshkenbein, Ioffe, Zyablyuk $+0.009 \pm 0.007$ from charmonium sum rules

Landau Congress Moscow, June 20, 2008

Consistent with zero vacuum condensate

AdS/QCD 3I

Stan Brodsky SLAC \& IPPP

Quark and Gluon condensates reside

within hadrons, not vacuum

- Bound-State Dyson-Schwinger Equations
- Domain becomes infinite at zero pion mass
- Finite volume phase transition
- Analogous to finite-size superconductor!
- Phase change observed at RHIC within a single-nucleusnucleus collisions-- quark gluon plasma!
- Implications for cosmological constant -reduction by 55 orders of magnitude!
"Confined QCD Condensates" shrock, sjb

Landau Congress Moscow, June 20, 2008

AdS/QCD
32

Stan Brodsky SLAC \& IPPP

Collide Gold Nuclei Together

STAR Time-Projection Chamber at RHIC

Produce thousands of particles in each collision
Evidence of Quark-Gluon Plasma

Landau Congress Moscow, June 20, 2008

AdS/QCD
33

Stan Brodsky SLAC \& IPPP

Away-side particles quenched in $\mathrm{Au}-\mathrm{Au}$ Collisions

Gluon density 50 times more dense than cold nuclear matter! Phase change within a single nuclens-nuclens collision

Landau Congress Moscow, June 20, 2008

AdS/QCD
35

Stan Brodsky SLAC \& IPPP

Deur, Korsch, et al: Effective Charge from Bjorken Sum Rule

Landau Congress Moscow, June 20, 2008

AdS/QCD
36

Stan Brodsky SLAC \& IPPP

Deur, Korsch, et al.

Landau Congress Moscow, June 20, 2008

AdS/QCD
37

Stan Brodsky SLAC \& IPPP

IR Conformal Window for QCD

- Dyson-Schwinger Analysis: QCD Coupling has IR Fixed Point
- Evidence from Lattice Gauge Theory
- Define coupling from observable: indications of IR fixed point for QCD effective charges
- Confined gluons and quarks have maximum de Teramond, wavelength
- Decoupling of $\mathbf{Q C D}$ vacuum polarization at $\operatorname{small}_{\ell^{+}} \mathbf{Q}^{\mathbf{2}}$

$$
\Pi\left(Q^{2}\right) \rightarrow \frac{\alpha}{15 \pi} \frac{Q^{2}}{m^{2}} \quad Q^{2} \ll 4 m^{2}
$$

SerberUehling

- Justifies application of AdS/CFT in strong-coupling conformal window

QCD Lagrangian

Sea Quark Asymmetries Intrinsic Strangeness, Charm, Bottom, Anapole

Quark and Gluon Orbital Angular Momentum Large x quark distributions

Exclusive Processes DVCS Compton Form Factors Vector Meson and Resonant Electroproduction

Diffractive DIS
Single-Spin Asymmetries Initial- and
Final-State Interactions Transversity

Proton Decay neutron EDM

Landau Congress Moscow, June 20, 2008

39

AdS/CFT DLCQ Lattice GTH EFT

LFWFS,
Distribution Amplitudes GPDs Structure Functions

Exotic States

 Heavy Quark Baryons ccd ccu bsdNuclei Hidden Color Shadowing Antishadowing

Astrophysics Big Bang Nucleosynthesis

- Although we know the QCD Lagrangian, we have only begun to understand its remarkable properties and features.
- Novel QCD Phenomena: hidden color, color transparency, strangeness asymmetry, intrinsic charm, anomalous heavy quark phenomena, anomalous spin effects, single-spin asymmetries, odderon, diffractive deep inelastic scattering, dangling gluons, shadowing, antishadowing, QGP, CGL, ...

AdS/QCD
40

Stan Brodsky SLAC \& IPPP

Truth is stranger than fiction, but it is because Fiction is obliged to stick to possibilities.

-Mark Twain

Landau Congress Moscow, June 20, 2008

AdS/QCD
4I

Stan Brodsky
SLAC \& IPPP

The World of Quarks and Gluons:

- Quarks and Gluons: Fundamental constituents of hadrons and nuclei
- Remarkable and novel properties of Quantum Chromodynamics (QCD)
- New Insights from higher space-time dimensions: Light-Front Holography: AdS/CFT

Landau Congress Moscow, June 20, 2008

AdS/QCD

Stan Brodsky SLAC \& IPPP

Applications of AdS/CFT to QCD

Changes in physical length scale mapped to evolution in the 5th dimension z

in collaboration with Guy de Teramond

Landau Congress
Moscow, June 20, 2008

AdS/QCD
43

Stan Brodsky SLAC \& IPPP

Goal:

- Use AdS/CFT to provide an approximate, covariant, and analytic model of hadron structure with confinement at large distances, conformal behavior at short distances
- Analogous to the Schrodinger Theory for Atomic Physics
- AdS/QCD Light-Front Holography
- Hadronic Spectra and Light-Front Wavefunctions
- Hadronization at the Amplitude Level

Landau Congress Moscow, June 20, 2008

AdS/QCD
44

Stan Brodsky SLAC \& IPPP

Landau Congress
Moscow, June 20, 2008

AdS/QCD
45

Stan Brodsky SLAC \& IPPP

Landau Congress
Moscow, June 20, 2008

AdS/QCD
46

Stan Brodsky SLAC \& IPPP

Landau Congress
Moscow, June 20, 2008

AdS/QCD
47

Stan Brodsky SLAC \& IPPP

Landau Congress
Moscow, June 20, 2008

AdS/QCD
48

Stan Brodsky SLAC \& IPPP

Conformal Theories are invariant under the Poincare and conformal transformations with

$$
\mathbf{M}^{\mu \nu}, \mathbf{P}^{\mu}, \mathbf{D}, \mathbf{K}^{\mu},
$$

the generators of $\operatorname{SO}(4,2)$

SO $(4,2)$ has a mathematical representation on AdS_{5}

Landau Congress
Moscow, June 20, 2008

AdS/QCD
49

Stan Brodsky SLAC \& IPPP

Scale Transformations

- Isomorphism of $S O(4,2)$ of conformal QCD with the group of isometries of AdS space

$$
d s^{2}=\frac{R^{2}}{z^{2}}\left(\eta_{\mu \nu} d x^{\mu} d x^{\nu}-d z^{2}\right), \quad \text { invariant measure }
$$

$x^{\mu} \rightarrow \lambda x^{\mu}, z \rightarrow \lambda z$, maps scale transformations into the holographic coordinate z.

- AdS mode in z is the extension of the hadron wf into the fifth dimension.
- Different values of z correspond to different scales at which the hadron is examined.

$$
x^{2} \rightarrow \lambda^{2} x^{2}, \quad z \rightarrow \lambda z .
$$

$x^{2}=x_{\mu} x^{\mu}$: invariant separation between quarks

- The AdS boundary at $z \rightarrow 0$ correspond to the $Q \rightarrow \infty$, UV zero separation limit.

Stan Brodsky SLAC \& IPPP

AdS/CFT: Anti-de Sitter Space / Conformal Field Theory

Maldacena:

$\operatorname{Map} A d S_{5} \times S_{5}$ to conformal $N=4$ SUSY

- QCD is not conformal; however, it has manifestations of a scale-invariant theory: Bjorken scaling, dimensional counting for hard exclusive processes
- Conformal window in theIR:

$$
\alpha_{s}\left(Q^{2}\right) \simeq \text { const at small } Q^{2}
$$

- Use mathematical mapping of the conformal group $\operatorname{SO}(4,2)$ to AdS5 space

Landau Congress Moscow, June 20, 2008

AdS/QCD
51

Stan Brodsky SLAC \& IPPP

Deur, Korsch, et al: Effective Charge from Bjorken Sum Rule

Landau Congress Moscow, June 20, 2008

AdS/QCD
52

Stan Brodsky SLAC \& IPPP

- Phenomenological success of dimensional scaling laws for exclusive processes

$$
d \sigma / d t \sim 1 / s^{n-2}, \quad n=n_{A}+n_{B}+n_{C}+n_{D}
$$

implies QCD is a strongly coupled conformal theory at moderate but not asymptotic energies Farrar and sjb (1973); Matveev et al. (1973).

- Derivation of counting rules for gauge theories with mass gap dual to string theories in warped space (hard behavior instead of soft behavior characteristic of strings) Polchinski and Strassler (2001).

Landau Congress Moscow, June 20, 2008

AdS/QCD
53

Stan Brodsky SLAC \& IPPP

Quark Counting Rules for Exclusive Processes

- Power-law fall-off of the scattering rate reflects degree of compositeness
- The more composite -- the faster the fall-off
- Power-law counts the number of quarks and gluon constituents
- Form factors: probability amplitude to stay intact
- $F_{H}(Q) \propto \frac{1}{\left(Q^{2}\right)^{n-1}} \quad \mathrm{n}=$ \# elementary constituents

Landau Congress Moscow, June 20, 2008

AdS/QCD 54

Stan Brodsky SLAC \& IPPP

Quark-Counting: $\frac{d \sigma}{d t}(p p \rightarrow p p)=\frac{F\left(\theta_{C M}\right)}{s^{10}} \quad n=4 \times 3-2=10$
P.V. LANDSHOFF and J.C. POLKINGHORNE

Angular distribution -- quark interchange

Landau Congress
Moscow, June 20, 2008

AdS/QCD

Stan Brodsky SLAC \& IPPP
Conformal Invariance:

Landau Congress Moscow, June 20, 2008

$\frac{d \sigma}{d t}(\gamma p \rightarrow M B)=\frac{F\left(\theta_{c m}\right)}{s^{7}}$
Stan Brodsky SLAC \& IPPP

Test of PQCD Scaling

Constituent counting rules

Conformal invariance

Landau Congress Moscow, June 20, 2008

AdS/QCD 57

Stan Brodsky SLAC \& IPPP

Deuteron Photodisintegration

J-Lab

PQCD and AdS/CFT:

$$
\begin{aligned}
& s^{n_{t o t}-2} \frac{d \sigma}{d t}(A+B \rightarrow C+D)= \\
& \mathrm{F}_{A+B \rightarrow C+D}\left(\theta_{C M}\right)
\end{aligned}
$$

$$
s^{11 \frac{d \sigma}{d t}}(\gamma d \rightarrow n p)=F\left(\theta_{C M}\right)
$$

$$
n_{t o t}-2=
$$

$$
(1+6+3+3)-2=11
$$

Reflects conformal invariance

Landau Congress

 Moscow, June 20, 2008AdS/QCD

Stan Brodsky SLAC \& IPPP

- 15% Hidden Color in the Deuteron

AdS/QCD
59

Stan Brodsky SLAC \& IPPP

- Truncated AdS/CFT (Hard-Wall) model: cut-off at $z_{0}=1 / \Lambda_{\mathrm{QCD}}$ breaks conformal invariance and allows the introduction of the QCD scale (Hard-Wall Model) Polchinski and Strassler (2001).
- Smooth cutoff: introduction of a background dilaton field $\varphi(z)$ - usual linear Regge dependence can be obtained (Soft-Wall Model) Karch, Katz, Son and Stephanov (2006).
We will consider both holographic models

Landau Congress Moscow, June 20, 2008

AdS/QCD
60

Stan Brodsky SLAC \& IPPP

- Polchinski \& Strassler: AdS/CFT builds in conformal symmetry at short distances; counting rules for form factors and hard exclusive processes; non-perturbative derivation
- Goal: Use AdS/CFT to provide an approximate model of hadron structure with confinement at large distances, conformal behavior at short distances
- de Teramond, sjb: AdS/QCD Holographic Model: Initial "semiclassical" approximation to QCD. Predict light-quark hadron spectroscopy, form factors.
- Karch, Katz, Son, Stephanov: Linear Confinement
- Mapping of AdS amplitudes to 3+ I Light-Front equations, wavefunctions
- Use AdS/CFT wavefunctions as expansion basis for diagonalizing $\mathrm{H}^{\mathrm{LF}} \mathrm{QCD}^{\text {; variational methods }}$

Landau Congress
Moscow, June 20, 2008

AdS/QCD
6I

Stan Brodsky
SLAC \& IPPP

AdS/CFT

- Use mapping of conformal group $\mathrm{SO}(4,2)$ to AdS 5
- Scale Transformations represented by wavefunction $\psi(z)$ in 5 th dimension

$$
x_{\mu}^{2} \rightarrow \lambda^{2} x_{\mu}^{2} \quad z \rightarrow \lambda z
$$

- Match solutions at small z to conformal dimension of hadron wavefunction at short distances $\psi(z) \sim z^{\Delta}$ at $z \rightarrow 0$
- Hard wall model: Confinement at large distances and conformal symmetry in interior
- Truncated space simulates "bag" boundary conditions

$$
0<z<z_{0} \quad \psi\left(z_{0}\right)=0 \quad z_{0}=\frac{1}{\Lambda_{Q C D}}
$$

Landau Congress
Moscow, June 20, 2008

AdS/QCD
62

Stan Brodsky SLAC \& IPPP

$$
\text { Let } \Phi(z)=z^{3 / 2} \phi(z)
$$

AdS Schrodinger Equation for bound state of two scalar constituents:

$$
\begin{gathered}
{\left[-\frac{d^{2}}{d z^{2}}+\mathbf{V}(\mathbf{z})\right] \phi(\mathbf{z})=\mathbf{M}^{2} \phi(\mathbf{z})} \\
\mathbf{V}(\mathbf{z})=-\frac{1-4 \mathbf{L}^{2}}{4 \mathbf{z}^{2}} \quad \begin{array}{c}
\text { Interpret } \mathrm{L} \\
\text { as orbital angular } \\
\text { momentum }
\end{array}
\end{gathered}
$$

Derived from variation of Action in AdS 5 Hard wall model: truncated space

$$
\phi\left(\mathrm{z}=\mathrm{z}_{0}=\frac{1}{\Lambda_{\mathrm{c}}}\right)=0 .
$$

Landau Congress Moscow, June 20, 2008

AdS/QCD
63

Stan Brodsky SLAC \& IPPP

Match fall-off at small z to conformal twist-dimension

 at short distancestwist

- Pseudoscalar mesons: $\mathcal{O}_{2+L}=\bar{\psi} \gamma_{5} D_{\left\{\ell_{1} \ldots D_{\left.\ell_{m}\right\}}\right.} \psi$ ($\Phi_{\mu}=0$ gauge). $\Delta=2+L$
- 4- d mass spectrum from boundary conditions on the normalizable string modes at $z=z_{0}$, $\Phi\left(x, z_{o}\right)=0$, given by the zeros of Bessel functions $\beta_{\alpha, k}: \mathcal{M}_{\alpha, k}=\beta_{\alpha, k} \Lambda_{Q C D}$
- Normalizable AdS modes $\Phi(z)$

$S=0 \quad$ Meson orbital and radial AdS modes for $\Lambda_{Q C D}=0.32 \mathrm{GeV}$.

Landau Congress Moscow, June 20, 2008

AdS/QCD
64

Fig: Orbital and radial AdS modes in the hard wall model for $\Lambda_{\mathrm{QCD}}=0.32 \mathrm{GeV}$.

Fig: Light meson and vector meson orbital spectrum $\Lambda_{Q C D}=0.32 \mathrm{GeV}$

Landau Congress Moscow, June 20, 2008

AdS/QCD
65 SLAC \& IPPP

$$
\text { Let } \Phi(z)=z^{3 / 2} \phi(z)
$$

AdS Schrodinger Equation for bound state of two scalar constituents:

$$
\left[-\frac{\mathrm{d}^{2}}{\mathrm{dz}^{2}}+\mathbf{V}(\mathrm{z})\right] \phi(\mathrm{z})=\mathbf{M}^{2} \phi(\mathrm{z})
$$

Hard wall model: truncated space

$$
\mathbf{V}(\mathbf{z})=-\frac{1-4 \mathbf{L}^{2}}{4 \mathbf{z}^{2}} \quad \phi\left(z=z_{0}=1 / \Lambda_{0}\right)=0
$$

Soft wall model: Harmonic oscillator confinement

$$
\mathrm{V}(\mathrm{z})=-\frac{1-4 \mathrm{~L}^{2}}{4 \mathrm{z}^{2}}+\kappa^{4} \mathrm{z}^{2}
$$

Derived from variation of Action in $A d S_{5}$

Landau Congress Moscow, June 20, 2008

AdS/QCD
66

Stan Brodsky SLAC \& IPPP

Fig: Orbital and radial AdS modes in the soft wall model for $\kappa=0.6 \mathrm{GeV}$.

Light meson orbital (a) and radial (b) spectrum for $\kappa=0.6 \mathrm{GeV}$.

Landau Congress Moscow, June 20, 2008

AdS/QCD
67

> Stan Brodsky SLAC \& IPPP

Soft-wall model

- Effective LF Schrödinger wave equation
$\left[-\frac{d^{2}}{d z^{2}}-\frac{1-4 L^{2}}{4 z^{2}}+\kappa^{4} z^{2}+2 \kappa^{2}(L+S-1)\right] \phi_{S}(z)=\mathcal{M}^{2} \phi_{S}(z)$ with eigenvalues $\mathcal{M}^{2}=2 \kappa^{2}(2 n+2 L+S)$. Same slope in n and L
- Compare with Nambu string result (rotating flux tube): $M_{n}^{2}(L)=2 \pi \sigma(n+L+1 / 2)$.

Vector mesons orbital (a) and radial (b) spectrum for $\kappa=0.54 \mathrm{GeV}$.

- Glueballs in the bottom-up approach: (HW) Boschi-Filho, Braga and Carrion (2005); (SW) Colangelo, De Facio, Jugeau and Nicotri(2007).

Landau Congress

 Moscow, June 20, 2008
AdS/QCD

68

Stan Brodsky
SLAC \& IPPP

AdS/QCD Soft Wall Model - Reproduces Linear Regge Trajectories

Hadron Form Factors from AdS/CFT

Propagation of external perturbation suppressed inside AdS.

$$
\begin{gathered}
J(Q, z)=z Q K_{1}(z Q) \\
F\left(Q^{2}\right)_{I \rightarrow F}=\int \frac{d z}{z^{3}} \Phi_{F}(z) J(Q, z) \Phi_{I}(z)
\end{gathered}
$$

High Q ${ }^{2}$
from
small z $\sim 1 / Q$

Polchinski, Strassler de Teramond, sjb

Andreev

Consider a specific AdS mode $\Phi^{(n)}$ dual to an n partonic Fock state $|n\rangle$. At small z, Φ scales as $\Phi^{(n)} \sim z^{\Delta_{n}}$. Thus:

$$
F\left(Q^{2}\right) \rightarrow\left[\frac{1}{Q^{2}}\right]^{\tau-1}
$$

Dimensional Quark Counting Rule General result from AdS/CFT
where $\tau=\Delta_{n}-\sigma_{n}, \sigma_{n}=\sum_{i=1}^{n} \sigma_{i}$. The twist is equal to the number of partons, $\tau=n$.

AdS/QCD
70

Stan Brodsky SLAC \& IPPP

Spacelike pion form factor from AdS/CFT

Data Compilation from Baldini, Kloe and Volmer
— SW: Harmonic Oscillator Confinement
HW: Truncated Space Confinement
One parameter - set by pion decay constant
de Teramond, sjb

Landau Congress Moscow, June 20, 2008

AdS/QCD
71

Stan Brodsky SLAC \& IPPP

- Analytical continuation to time-like region $q^{2} \rightarrow-q^{2} \quad M_{\rho}=2 \kappa=750 \mathrm{MeV}$
- Strongly coupled semiclassical gauge/gravity limit hadrons have zero widths (stable).

Space and time-like pion form factor for $\kappa=0.375 \mathrm{GeV}$ in the SW model.

- Vector Mesons: Hong, Yoon and Strassler (2004); Grigoryan and Radyushkin (2007).

Landau Congress

Moscow, June 20, 2008

AdS/QCD

72

Stan Brodsky SLAC \& IPPP

Dírac'sAmazing Idea:

The Front Form

Evolve in
light-front time!

Instant Form

Landau Congress
Moscow, June 20, 2008

AdS/QCD
73

Stan Brodsky SLAC \& IPPP

Each element of flash photograph illuminated at same LF time

$$
\tau=t+z / c
$$

Calculation of Form Factors in Equal-Time Theory Instant Form

Need vacuum-induced currents
Calculation of Form Factors in Light-Front Theory Front Form

Landau Congress Moscow, June 20, 2008

Absent for $q^{+}=0$ zero!!

AdS/QCD 75

Stan Brodsky SLAC \& IPPP

Calculation of Hadron Form Factors in Instant Form

- Current matrix elements of hadron include interactions with vacuum-induced currents arising from infinitely-complex vacuum
- Pair creation from vacuum occurs at any time before probe acts -acausal
- Knowledge of hadron wavefunction insufficient to compute current matrix elements

- Requires dynamical boost of hadron wavefunction -- unknown except at weak binding
- Complex vacuum even for QED
- None of these complications occur for quantization at fixed LF time (front form)

Landau Congress
Moscow, June 20, 2008

AdS/QCD
76

Stan Brodsky SLAC \& IPPP

Light-Front Wavefunctions: rigorous representation of composite systems in quantum field theory

$$
x=\frac{k^{+}}{P^{+}}=\frac{k^{0}+k^{3}}{P^{0}+P^{3}}
$$

$$
\text { Fixed } \tau=t+z / c
$$

Angular Momentum on the Light-Front

$$
J^{z}=\sum_{i=1}^{n} s_{i}^{z}+\sum_{j=1}^{n-1} l_{j}^{z}
$$

Conserved

LF Fock state by Fock State

$$
l_{j}^{z}=-\mathrm{i}\left(k_{j}^{1} \frac{\partial}{\partial k_{j}^{2}}-k_{j}^{2} \frac{\partial}{\partial k_{j}^{1}}\right)
$$

n -ı orbital angular momenta

Nonzero Anomalous Moment -->Nonzero orbital angular momentum

Landau Congress Moscow, June 20, 2008

AdS/QCD
78

Stan Brodsky SLAC \& IPPP

A Unified Description of Hadron Structure

Hadronization at the Amplitude Level

$$
\psi\left(x, \vec{k}_{\perp}, \lambda_{i}\right)
$$

Event amplitude generator

Construct helicity amplitude using Light-Front Perturbation theory; coalesce quarks via LFWFs

Landau Congress Moscow, June 20, 2008

AdS/QCD
80

Stan Brodsky SLAC \& IPPP

Light-Front Representation of Two-Body Meson Form Factor

- Drell-Yan-West form factor

$$
F\left(q^{2}\right)=\sum_{q} e_{q} \int_{0}^{1} d x \int \frac{d^{2} \vec{k}_{\perp}}{16 \pi^{3}} \psi_{P^{\prime}}^{*}\left(x, \vec{k}_{\perp}-x \vec{q}_{\perp}\right) \psi_{P}\left(x, \vec{k}_{\perp}\right)
$$

- Fourrier transform to impact parameter space \vec{b}_{\perp}

$$
\psi\left(x, \vec{k}_{\perp}\right)=\sqrt{4 \pi} \int d^{2} \vec{b}_{\perp} e^{i \vec{b}_{\perp} \cdot \vec{k}_{\perp}} \widetilde{\psi}\left(x, \vec{b}_{\perp}\right)
$$

- Find $\left(b=\left|\vec{b}_{\perp}\right|\right):$

$$
\begin{aligned}
F\left(q^{2}\right) & =\int_{0}^{1} d x \int d^{2} \vec{b}_{\perp} e^{i x \vec{b}_{\perp} \cdot \vec{q}_{\perp}}|\widetilde{\psi}(x, b)|^{2} \\
& =2 \pi \int_{0}^{1} d x \int_{0}^{\infty} b d b J_{0}(b q x)|\widetilde{\psi}(x, b)|^{2}
\end{aligned}
$$

Holographic Mapping of AdS Modes to QCD LFWFs

- Integrate Soper formula over angles:

$$
F\left(q^{2}\right)=2 \pi \int_{0}^{1} d x \frac{(1-x)}{x} \int \zeta d \zeta J_{0}\left(\zeta q \sqrt{\frac{1-x}{x}}\right) \tilde{\rho}(x, \zeta)
$$

with $\widetilde{\rho}(x, \zeta)$ QCD effective transverse charge density.

- Transversality variable

$$
\zeta=\sqrt{\frac{x}{1-x}}\left|\sum_{j=1}^{n-1} x_{j} \mathbf{b}_{\perp j}\right|
$$

- Compare AdS and QCD expressions of FFs for arbitrary Q using identity:

$$
\int_{0}^{1} d x J_{0}\left(\zeta Q \sqrt{\frac{1-x}{x}}\right)=\zeta Q K_{1}(\zeta Q)
$$

the solution for $J(Q, \zeta)=\zeta Q K_{1}(\zeta Q)$!

Landau Congress Moscow, June 20, 2008

AdS/QCD
82

Stan Brodsky SLAC \& IPPP

- Electromagnetic form-factor in AdS space:

$$
F_{\pi^{+}}\left(Q^{2}\right)=R^{3} \int \frac{d z}{z^{3}} J\left(Q^{2}, z\right)\left|\Phi_{\pi^{+}}(z)\right|^{2}
$$

where $J\left(Q^{2}, z\right)=z Q K_{1}(z Q)$.

- Use integral representation for $J\left(Q^{2}, z\right)$

$$
J\left(Q^{2}, z\right)=\int_{0}^{1} d x J_{0}\left(\zeta Q \sqrt{\frac{1-x}{x}}\right)
$$

- Write the AdS electromagnetic form-factor as

$$
F_{\pi^{+}}\left(Q^{2}\right)=R^{3} \int_{0}^{1} d x \int \frac{d z}{z^{3}} J_{0}\left(z Q \sqrt{\frac{1-x}{x}}\right)\left|\Phi_{\pi^{+}}(z)\right|^{2}
$$

- Compare with electromagnetic form-factor in light-front QCD for arbitrary Q

$$
\left|\tilde{\psi}_{q \bar{q} / \pi}(x, \zeta)\right|^{2}=\frac{R^{3}}{2 \pi} x(1-x) \frac{\left|\Phi_{\pi}(\zeta)\right|^{2}}{\zeta^{4}}
$$

with $\zeta=z, 0 \leq \zeta \leq \Lambda_{\mathrm{QCD}}$

Landau Congress Moscow, June 20, 2008

AdS/QCD
83

Stan Brodsky SLAC \& IPPP

$$
\begin{gathered}
L F(3+1) \\
\psi\left(x, \vec{b}_{\perp}\right) \\
\psi\left(x, \vec{b}_{\perp}\right) \xrightarrow{x(1-x) \vec{b}_{\perp}^{2}} \rightarrow \text { (z) } \\
\psi(x, \zeta)=\sqrt{x(1-x)} \zeta^{-1 / 2} \phi(\zeta)
\end{gathered}
$$

Light-Front Holography: Unique mapping derived from equality of LF and AdS formula for current matrix elements

Landau Congress

 Moscow, June 20, 2008AdS/QCD
84

Stan Brodsky SLAC \& IPPP

Holography:
 Map AdS/CFT to 3+1 LF Theory

Relativistic LF radial equation Frame Independent

$$
\begin{gathered}
{\left[-\frac{d^{2}}{d \zeta^{2}}+V(\zeta)\right] \phi(\zeta)=\mathcal{M}^{2} \phi(\zeta)} \\
\zeta^{2}=x(1-x) \mathbf{b}_{\perp}^{2}
\end{gathered}
$$

G. de Teramond, sib

Effective conformal potential:

Landau Congress Moscow, June 20, 2008

$$
V(\zeta)=-\frac{1-4 L^{2}}{4 \zeta^{2}}
$$

$$
+\kappa^{4} \zeta^{2} \text { confining potential: }
$$

AdS/QCD 85

Stan Brodsky SLAT \& APP

Gravitational Form Factor in AdS space

- Hadronic gravitational form-factor in AdS space

$$
A_{\pi}\left(Q^{2}\right)=R^{3} \int \frac{d z}{z^{3}} H\left(Q^{2}, z\right)\left|\Phi_{\pi}(z)\right|^{2}
$$

Abidin \& Carlson
where $H\left(Q^{2}, z\right)=\frac{1}{2} Q^{2} z^{2} K_{2}(z Q)$

- Use integral representation for $H\left(Q^{2}, z\right)$

$$
H\left(Q^{2}, z\right)=2 \int_{0}^{1} x d x J_{0}\left(z Q \sqrt{\frac{1-x}{x}}\right)
$$

- Write the AdS gravitational form-factor as

$$
A_{\pi}\left(Q^{2}\right)=2 R^{3} \int_{0}^{1} x d x \int \frac{d z}{z^{3}} J_{0}\left(z Q \sqrt{\frac{1-x}{x}}\right)\left|\Phi_{\pi}(z)\right|^{2}
$$

- Compare with gravitational form-factor in light-front QCD for arbitrary Q

$$
\left|\tilde{\psi}_{q \bar{q} / \pi}(x, \zeta)\right|^{2}=\frac{R^{3}}{2 \pi} x(1-x) \frac{\left|\Phi_{\pi}(\zeta)\right|^{2}}{\zeta^{4}}
$$

Identical to LF Holography obtained from electromagnetic current

Landau Congress

 Moscow, June 20, 2008Stan Brodsky SLAC \& IPPP

Light-Front AdS 5 Duality

> At fixed x^{+}
> $d s^{2}=-\frac{R^{2}}{z^{2}}\left(d x_{\perp}^{2}+d z^{2}\right)$

Invariant under $d x_{\perp}^{2} \rightarrow \lambda^{2} d x_{\perp}^{2}$ $z \rightarrow \lambda z$

Landau Congress
Moscow, June 20, 2008

AdS/QCD 87

Stan Brodsky SLAC \& IPPP

- Two parton LFWF bound state:

$$
\begin{aligned}
& \widetilde{\psi}_{\bar{q} q / \pi}^{H W}\left(x, \mathbf{b}_{\perp}\right)=\frac{\Lambda_{\mathrm{QCD}} \sqrt{x(1-x)}}{\sqrt{\pi} J_{1+L}\left(\beta_{L, k}\right)} J_{L}\left(\sqrt{x(1-x)}\left|\mathbf{b}_{\perp}\right| \beta_{L, k} \Lambda_{\mathrm{QCD}}\right) \theta\left(\mathbf{b}_{\perp}^{2} \leq \frac{\Lambda_{\mathrm{QCD}}^{-2}}{x(1-x)}\right), \\
& \widetilde{\psi}_{\bar{q} q / \pi}^{S W}\left(x, \mathbf{b}_{\perp}\right)=\kappa^{L+1} \sqrt{\frac{2 n!}{(n+L)!}}[x(1-x)]^{\frac{1}{2}+L}\left|\mathbf{b}_{\perp}\right|^{L} e^{-\frac{1}{2} \kappa^{2} x(1-x) \mathbf{b}_{\perp}^{2}} L_{n}^{L}\left(\kappa^{2} x(1-x) \mathbf{b}_{\perp}^{2}\right) . \\
& \text { (a) } \\
& \text { (b) }
\end{aligned}
$$

Ground state pion LFWF in impact space. (a) HW model $\Lambda_{\mathrm{QCD}}=0.32 \mathrm{GeV}$, (b) SW model $\kappa=0.375 \mathrm{GeV}$.

Landau Congress

 Moscow, June 20, 2008
AdS/QCD

88

Stan Brodsky SLAC \& IPPP

Prediction from AdS/CFT: Meson LFWF

$$
\begin{array}{cc}
\substack{1 . y^{\prime}} & \kappa=0.375 \mathrm{GeV} \\
k_{\perp}(\mathrm{GeV}){ }_{1.5} & \text { massless quarks } \\
\psi_{M}\left(x, k_{\perp}\right)=\frac{4 \pi}{\kappa \sqrt{x(1-x}} e^{-\frac{k_{\perp}^{2}}{2 \kappa^{2} x(1-x)}} & \phi_{M}\left(x, Q_{0}\right) \propto \sqrt{x(1-x)}
\end{array}
$$

Landau Congress Moscow, June 20, 2008

AdS/QCD
89

Stan Brodsky SLAC \& IPPP

Second Moment of Pion Distribution Amplitude

$$
<\xi^{2}>=\int_{-1}^{1} d \xi \xi^{2} \phi(\xi)
$$

$$
\xi=1-2 x
$$

$$
\begin{array}{rrr}
<\xi^{2}>_{\pi}=1 / 5=0.20 & \phi_{\text {asympt }} \propto x(1-x) \\
<\xi^{2}>_{\pi}=1 / 4=0.25 & \phi_{A d S / Q C D} \propto \sqrt{x(1-x)}
\end{array}
$$

Lattice (I) $<\xi^{2}>_{\pi}=0.28 \pm 0.03$
Lattice (II) $<\xi^{2}>_{\pi}=0.269 \pm 0.039$

Landau Congress
Moscow, June 20, 2008

AdS/QCD
90

Donnellan et al.
Braun et al.
Stan Brodsky SLAC \& IPPP

Landau Congress Moscow, June 20, 2008

AdS/QCD
9I

Stan Brodsky SLAC \& IPPP

$$
F_{\pi}\left(Q^{2}\right)=\int_{0}^{1} d x \phi_{\pi}(x) \int_{0}^{1} d y \phi_{\pi}(y) \frac{16 \pi C_{F} \alpha_{V}\left(Q_{V}\right)}{(1-x)(1-y) Q^{2}}
$$

AdS/CFT: Increases PQCD leading twist prediction for $F_{\pi}\left(Q^{2}\right)$ by factor $16 / 9$

Landau Congress
Moscow, June 20, 2008

AdS/QCD
92

Stan Brodsky SLAC \& IPPP

Hadronization at the Amplitude Level

AdS/QCD Hard wall

$$
\begin{aligned}
& \text { Capture if } \zeta^{2}=x(1-x \\
& \text { i.e., } \\
& \mathcal{M}^{2}=\frac{k_{1}^{2}}{x(1-x)}<\Lambda_{Q C D}^{2}
\end{aligned}
$$

$$
\begin{gathered}
{\left[-\frac{d^{2}}{d \zeta^{2}}+V(\zeta)\right] \phi(\zeta)=\mathcal{M}^{2} \phi(\zeta)_{\text {de Teramond, sjl }}} \\
\zeta=\sqrt{x(1-x) \vec{b}_{\perp}^{2}} \quad \begin{array}{c}
\text { HolographicVariable } \\
-\frac{d}{d \zeta^{2}} \equiv \frac{k_{\perp}^{2}}{x(1-x)} \quad \text { LF KineticEnergy in } \\
\text { momentumspace }
\end{array}
\end{gathered}
$$

Assume LFWF is a dynamical function of the quark-antiquark invariant mass squared

$$
-\frac{d}{d \zeta^{2}} \rightarrow-\frac{d}{d \zeta^{2}}+\frac{m_{1}^{2}}{x}+\frac{m_{2}^{2}}{1-x} \equiv \frac{k_{\perp}^{2}+m_{1}^{2}}{x}+\frac{k_{\perp}^{2}+m_{2}^{2}}{1-x}
$$

Landau Congress Moscow, June 20, 2008

AdS/QCD
94

Stan Brodsky SLAC \& IPPP

Result: Soft-Wall LFWF for massive constituents

$$
\begin{aligned}
& \psi\left(x, \mathbf{k}_{\perp}\right)=\frac{4 \pi c}{\kappa \sqrt{x(1-x)}} e^{-\frac{1}{2 \kappa^{2}}\left(\frac{\mathbf{k}_{\perp}^{2}}{x(1-x)}+\frac{m_{1}^{2}}{x}+\frac{m_{2}^{2}}{1-x}\right)} \\
& \text { LF WF in impact space: soft-wall model } \\
& \text { with massive quarks } \\
& \psi\left(x, \mathbf{b}_{\perp}\right)=\frac{c \kappa}{\sqrt{\pi}} \sqrt{x(1-x)} e^{-\frac{1}{2} \kappa^{2} x(1-x) \mathbf{b}_{\perp}^{2}-\frac{1}{2 \kappa^{2}}\left[\frac{m_{1}^{2}}{x}+\frac{m_{2}^{2}}{1-x}\right]} \\
& z \rightarrow \zeta \rightarrow \chi \\
& \chi^{2}=b^{2} x(1-x)+\frac{1}{\kappa^{4}}\left[\frac{m_{1}^{2}}{x}+\frac{m_{2}^{2}}{1-x}\right] \\
& \text { Landau Congress } \\
& \text { Moscow, June 20, } 2008 \\
& \text { AdS/QCD } \\
& 95 \\
& \text { Stan Brodsky } \\
& \text { SLAC \& IPPP }
\end{aligned}
$$

J / ψ

LFWF peaks at

$$
x_{i}=\frac{m_{\perp i}}{\sum_{j}^{n} m_{\perp j}}
$$

where

$$
m_{\perp i}=\sqrt{m^{2}+k_{\perp}^{2}}
$$

minimum of LF energy
denominator

$$
\kappa=0.375 \mathrm{GeV}
$$

Landau Congress Moscow, June 20, 2008

$$
\begin{aligned}
\mid \pi^{+}> & =\mid u \bar{d}> \\
m_{u} & =2 \mathrm{MeV} \\
m_{d} & =5 \mathrm{MeV}
\end{aligned}
$$

$$
m_{s}=95 \mathrm{MeV}
$$

$$
\left|D^{+}>=\right| c \bar{d}>
$$

$$
\left|\eta_{c}>=\right| c \bar{c}>
$$

$$
m_{c}=1.25 \mathrm{GeV}
$$

$\left|B^{+}>=\right| u \bar{b}>$ $m_{b}=4.2 \mathrm{GeV}$

$$
\left|\eta_{b}>=\right| b \bar{b}>
$$

$\kappa=375 \mathrm{MeV}$

- Baryons Spectrum in "bottom-up" holographic QCD GdT and Brodsky: hep-th/0409074, hep-th/0501022.

Baryons in Ads/CFT

- Action for massive fermionic modes on AdS_{d+1} :

$$
S[\bar{\Psi}, \Psi]=\int d^{d+1} x \sqrt{g} \bar{\Psi}(x, z)\left(i \Gamma^{\ell} D_{\ell}-\mu\right) \Psi(x, z) .
$$

- Equation of motion: $\quad\left(i \Gamma^{\ell} D_{\ell}-\mu\right) \Psi(x, z)=0$

$$
\left[i\left(z \eta^{\ell m} \Gamma_{\ell} \partial_{m}+\frac{d}{2} \Gamma_{z}\right)+\mu R\right] \Psi\left(x^{\ell}\right)=0
$$

Landau Congress
Moscow, June 20, 2008

AdS/QCD
98

Stan Brodsky SLAC \& IPPP

Fig: Light baryon orbital spectrum for $\Lambda_{Q C D}=0.25 \mathrm{GeV}$ in the HW model. The $\mathbf{5 6}$ trajectory corresponds to L even $P=+$ states, and the 70 to L odd $P=-$ states.

Landau Congress Moscow, June 20, 2008

AdS/QCD
99

Stan Brodsky SLAC \& IPPP

$S U(6)$	S	L	Baryon State
56	$\frac{1}{2}$	0	$N \frac{1}{2}^{+}(939)$
	$\frac{3}{2}$	0	$\Delta \frac{3}{2}^{+}$(1232)
70	$\frac{1}{2}$	1	$N \frac{1}{2}^{-}{ }^{(1535)}{ }^{(12}{ }^{-}{ }^{-}(1520)$
	$\frac{3}{2}$	1	$N \frac{1}{2}^{-}(1650) N \frac{3}{2}^{-}(1700) N \frac{5}{2}^{-}(1675)$
	$\frac{1}{2}$	1	$\Delta \frac{1}{2}^{-}(1620) \Delta \frac{3}{2}^{-}(1700)$
56	$\frac{1}{2}$	2	$N \frac{3}{2}^{+}(1720) N \frac{5}{2}^{+}(1680)$
	$\frac{3}{2}$	2	$\Delta \frac{1}{2}^{+}(1910) \Delta \frac{3}{2}^{+}(1920) \Delta \frac{5}{2}^{+}(1905) \Delta \frac{7}{2}^{+}(1950)$
70	$\frac{1}{2}$	3	$N \frac{5}{2}^{-} \quad N \frac{7}{2}^{-}$
	$\frac{3}{2}$	3	$N \frac{3}{2}^{-} \quad N \frac{5}{2}^{-} \quad N \frac{7}{2}^{-}(2190) N \frac{9}{2}^{-}(2250)$
	$\frac{1}{2}$	3	$\Delta \frac{5}{2}^{-}(1930) \Delta \frac{7}{2}^{-}$
56	$\frac{1}{2}$	4	$N \frac{7}{2}^{+} \quad N \frac{9}{2}^{+}(2220)$
	$\frac{3}{2}$	4	$\Delta \frac{5}{2}^{+} \quad \Delta \frac{7}{2}^{+} \quad \Delta \frac{9}{2}^{+} \quad \Delta \frac{11}{2}^{+}(2420)$
70	$\frac{1}{2}$	5	$N \frac{9}{2}^{-} \quad N \frac{11}{2}^{-}(2600)$
	$\frac{3}{2}$	5	$N \frac{7}{2}^{-} \quad N \frac{9}{2}^{-} \quad N \frac{11}{2}^{-} \quad N \frac{13}{2}^{-}$

Landau Congress Moscow, June 20, 2008

AdS/QCD
100

Stan Brodsky
SLAC \& IPPP

Space-Like Dirac Proton Form Factor

- Consider the spin non-flip form factors

$$
\begin{aligned}
F_{+}\left(Q^{2}\right) & =g_{+} \int d \zeta J(Q, \zeta)\left|\psi_{+}(\zeta)\right|^{2} \\
F_{-}\left(Q^{2}\right) & =g_{-} \int d \zeta J(Q, \zeta)\left|\psi_{-}(\zeta)\right|^{2}
\end{aligned}
$$

where the effective charges g_{+}and g_{-}are determined from the spin-flavor structure of the theory.

- Choose the struck quark to have $S^{z}=+1 / 2$. The two AdS solutions $\psi_{+}(\zeta)$ and $\psi_{-}(\zeta)$ correspond to nucleons with $J^{z}=+1 / 2$ and $-1 / 2$.
- For $S U(6)$ spin-flavor symmetry

$$
\begin{aligned}
F_{1}^{p}\left(Q^{2}\right) & =\int d \zeta J(Q, \zeta)\left|\psi_{+}(\zeta)\right|^{2} \\
F_{1}^{n}\left(Q^{2}\right) & =-\frac{1}{3} \int d \zeta J(Q, \zeta)\left[\left|\psi_{+}(\zeta)\right|^{2}-\left|\psi_{-}(\zeta)\right|^{2}\right]
\end{aligned}
$$

where $F_{1}^{p}(0)=1, F_{1}^{n}(0)=0$.

AdS/QCD
IOI

Stan Brodsky SLAC \& IPPP

- Scaling behavior for large $Q^{2}: \quad Q^{4} F_{1}^{p}\left(Q^{2}\right) \rightarrow$ constant \quad Proton $\tau=3$

SW model predictions for $\kappa=0.424 \mathrm{GeV}$. Data analysis from: M. Diehl et al. Eur. Phys. J. C 39, 1 (2005).

Landau Congress
Moscow, June 20, 2008

AdS/QCD
102

Stan Brodsky SLAC \& IPPP

Dirac Neutron Form Factor

(Valence Approximation)

$$
Q^{4} F_{1}^{n}\left(Q^{2}\right)\left[\mathrm{GeV}^{4}\right]
$$

Prediction for $Q^{4} F_{1}^{n}\left(Q^{2}\right)$ for $\Lambda_{\mathrm{QCD}}=0.21 \mathrm{GeV}$ in the hard wall approximation. Data analysis from Diehl (2005).

Landau Congress

Moscow, June 20, 2008

AdS/QCD
103

Stan Brodsky SLAC \& IPPP

From overlap of $L=1$ and $L=0$ LFWFs
$F_{2}^{p}\left(Q^{2}\right)$

Prediction from AdS/CFT: Meson LFWF x

Hadron Distribution Amplitudes

Lepage, sjb

$$
\begin{gathered}
\phi_{H}\left(x_{i}, Q\right) \\
\sum_{i} x_{i}=1
\end{gathered}
$$

$$
k_{\perp}^{2}<Q^{2}
$$

- Fundamental gauge invariant non-perturbative input to hard exclusive processes, heavy hadron decays. Defined for Mesons, Baryons
- Evolution Equations from PQCD, OPE, Conformal Invariance

Frishman, Lepage, Sachrajda, sjb Peskin Braun
Efremov, Radyushkin Chernyak etal

- Compute from valence light-front wavefunction in light-cone gauge

$$
\phi_{M}(x, Q)=\int^{Q} d^{2} \vec{k} \psi_{q \bar{q}}\left(x, \vec{k}_{\perp}\right)
$$

Landau Congress
Moscow, June 20, 2008

AdS/QCD
106

Stan Brodsky SLAC \& IPPP

Prediction from AdS/CFT: Meson LFWF

$$
\begin{aligned}
& W_{M}\left(x, K_{1}{ }_{L}\right) \\
& \psi_{M}\left(x, k_{\perp}\right)=\frac{4 \pi}{\kappa \sqrt{x(1-x)}} e^{-\frac{k^{2}}{2 \kappa^{2} x(1-x)}} \quad \phi_{M}\left(x, Q_{0}\right) \propto \sqrt{x(1-x)} \\
& \text { de Teramond, sjb } \\
& \kappa=0.375 \mathrm{GeV} \\
& \text { massless quarks }
\end{aligned}
$$

Landau Congress Moscow, June 20, 2008

AdS/QCD 107

Spacelike pion form factor from AdS/CFT

Data Compilation
Baldini, Kloe and Volmer
_ Soft Wall: Harmonic Oscillator Confinement — Hard Wall: Truncated Space Confinement

One parameter - set by pion decay constant

Landau Congress Moscow, June 20, 2008

AdS/QCD
108
de Teramond, sjb
See also: Radyushkin Stan Brodsky SLAC \& IPPP

Light-Front Wavefunctions

Dirac's Front Form: Fixed $\tau=t+z / c$

$$
\psi\left(x, k_{\perp}\right)
$$

Invariant under boosts. Independent of P^{μ}

$$
\mathrm{H}_{L F}^{Q C D}\left|\psi>=M^{2}\right| \psi>
$$

Remarkable new insights from AdS/CFT, the duality between conformal field theory and Anti-de Sitter Space

Landau Congress Moscow, June 20, 2008

AdS/QCD
109

Stan Brodsky SLAC \& IPPP

How can we systematically improve $A d S / Q C D$?

AdS/QCD: Semiclassical model

No Particle Creation

Valence Fock State only

AdS/QCD
IIO

Stan Brodsky SLAC \& IPPP

$$
\left|p, S_{z}>=\sum_{n=3} \Psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)\right| n ; \vec{k}_{\perp_{i}}, \lambda_{i}>
$$

sum over states with $n=3,4, \ldots$ constituents

The Light Front Fock State Wavefunctions

$$
\Psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)
$$

are boost invariant; they are independent of the hadron's energy and momentum P^{μ}.

The light-cone momentum fraction

$$
x_{i}=\frac{k_{i}^{+}}{p^{+}}=\frac{k_{i}^{0}+k_{i}^{z}}{P^{0}+P^{z}}
$$

are boost invariant.

$$
\sum_{i}^{n} k_{i}^{+}=P^{+}, \sum_{i}^{n} x_{i}=1, \sum_{i}^{n} \vec{k}_{i}^{\perp}=\overrightarrow{0}^{\perp}
$$

Intrinsic heavy quarks
Mueller: BFKL DYNAMICS

Landau Congress
Moscow, June 20, 2008

$$
\begin{gathered}
\bar{u}(x) \neq \bar{d}(x) \\
\bar{s}(x) \neq s(x)
\end{gathered}
$$

Fixed LF time

Stan Brodsky SLAC \& IPPP

Light Antiquark Flavor Asymmetry

- Naïve Assumption from gluon splitting:

$$
\bar{d}(x)=\bar{u}(x)
$$

■ E866/NuSea (Drell-Yan)

$$
\bar{d}(x) / \bar{u}(x) \text { for } 0.015 \leq x \leq 0.35
$$

Heisenberg Matrix

 Formulation$$
\begin{aligned}
& \begin{array}{l}
L^{Q C D} \rightarrow H_{L F}^{Q C D} \\
{ }^{D D}=\sum_{i}\left[\frac{m^{2}+k_{\perp}^{2}}{x}\right]_{i}+H_{L F}^{i n t}
\end{array} \\
& H_{L F}^{i n t} \text { : Matrix in Fock Space } \\
& H_{L F}^{Q C D}\left|\Psi_{h}>=\mathcal{M}_{h}^{2}\right| \Psi_{h}> \\
& \text { Eigenvalues and Eigensolutions give Hadron } \\
& \text { Spectrum and Light-Front wavefunctions }
\end{aligned}
$$

DLCQ: Periodic BC in x^{-}. Discrete k^{+}; frame-independent truncation

LIGHT-FRONT SCHRODINGER EQUATION

$$
\begin{aligned}
& A^{+}=0
\end{aligned}
$$

Landau Congress
Moscow, June 20, 2008

AdS/QCD 114

Stan Brodsky SLAC \& IPPP

Light-Front QCD
Heisenberg Matrix Formulation

$$
H_{L F}^{Q C D}\left|\Psi_{h}>=\mathcal{M}_{h}^{2}\right| \Psi_{h}
$$

Discretized Light-Cone Quantization

Eigenvalues and Eigensolutions give Hadron
Spectrum and Light-Front wavefunctions
H.C. Pauli \& sjb

DLCQ: Frame-independent, No fermion doubling, Minkowski Space

Light-Front QCD Heisenberg Equation

$$
H_{L C}^{Q C D}\left|\Psi_{h}\right\rangle=\mathcal{M}_{h}^{2}\left|\Psi_{h}\right\rangle
$$

Use AdS/QCD basis functions

Landau Congress Moscow, June 20, 2008

AdS/QCD
116

Stan Brodsky SLAT \& APP

Use AdS/CFT orthonormal LFWFs

 as abasis for diagonalizing the QCD LF Hamiltonian- Good initial approximant: generates all Fock states
- Better than plane wave basis McCartor, sjb
- DLCQ discretization -- highly successful I+I
- Use independent HO LFWFs, remove CM motion
- Similar to Shell Model calculations

Landau Congress Moscow, June 20, 2008

AdS/QCD
117

Stan Brodsky SLAC \& IPPP

Holographic Connection between LF and AdS/CFT

- Predictions for hadronic spectra, light-front wavefunctions, interactions
- Deduce meson and baryon wavefunctions, distribution amplitude, structure function from holographic constraint
- Identification of Orbital Angular Momentum Casimir for $\mathrm{SO}(2)$: LF Rotations
- Extension to massive quarks

Stan Brodsky SLAC \& IPPP

New Perspectives for $Q C D$ from $A d S / C F T$

- LFWFs: Fundamental frame-independent description of hadrons at amplitude level
- Holographic Model from AdS/CFT : Confinement at large distances and conformal behavior at short distances
- Model for LFWFs, meson and baryon spectra: many applications!
- New basis for diagonalizing Light-Front Hamiltonian
- Physics similar to MIT bag model, but covariant. No problem with support $\mathrm{O}<\mathrm{x}<\mathrm{I}$.
- Quark Interchange dominant force at short distances

AdS/QCD
119

Stan Brodsky SLAC \& IPPP

CIM: Blankenbecler, Gunion, sjb

Quark Interchange
(Spin exchange in atomatom scattering)

$$
\frac{d \sigma}{d t}=\frac{|M(s, t)|^{2}}{s^{2}}
$$

$M(t, u)_{\text {interchange }} \propto \frac{1}{u t^{2}}$
$M(s, t)_{\text {gluonexchange }} \propto s F(t)$
MIT Bag Model (de Tar), large N_{C}, ('t Hooft), AdS/CFT all predict dominance of quark interchange:

Landau Congress Moscow, June 20, 2008

AdS/QCD
120

Stan Brodsky SLAC \& IPPP

AdS/CFT explains why quark interchange is dominant interaction at high momentum transfer in exclusive reactions
$M(t, u)_{\text {interchange }} \propto \frac{1}{u t^{2}}$

Non-linear Regge behavior:

$$
\alpha_{R}(t) \rightarrow-1
$$

Landau Congress Moscow, June 20, 2008

AdS/QCD
$12 I$

Stan Brodsky SLAC \& IPPP

Comparison of Exclusive Reactions at Large \boldsymbol{t}

B. R. Baller, ${ }^{(a)}$ G. C. Blazey, ${ }^{(b)}$ H. Courant, K. J. Heller, S. Heppelmann, ${ }^{(c)}$ M. L. Marshak, E. A. Peterson, M. A. Shupe, and D. S. Wahl ${ }^{\text {(d) }}$

University of Minnesota, Minneapolis, Minnesota 55455
D. S. Barton, G. Bunce, A. S. Carroll, and Y. I. Makdisi

Brookhaven National Laboratory, Upton, New York 11973
and
S. Gushue ${ }^{(\mathrm{e})}$ and J. J. Russell

Southeastern Massachusetts University, North Dartmouth, Massachusetts 02747
(Received 28 October 1987; revised manuscript received 3 February 1988)

Cross sections or upper limits are reported for twelve meson-baryon and two baryon-baryon reactions for an incident momentum of $9.9 \mathrm{GeV} / \mathrm{c}$, near 90° c.m.: $\pi^{ \pm} p \rightarrow p \pi^{ \pm}, p \rho^{ \pm}, \pi^{+} \Delta^{ \pm}, K^{+} \Sigma^{ \pm},\left(\Lambda^{0} / \Sigma^{0}\right) K^{0}$; $K^{ \pm} p \rightarrow p K^{ \pm} ; p^{ \pm} p \rightarrow p p^{ \pm}$. By studying the flavor dependence of the different reactions, we have been able to isolate the quark-interchange mechanism as dominant over gluon exchange and quark-antiquark annihilation.

$$
\begin{aligned}
& \pi^{ \pm} p \rightarrow p \pi^{ \pm} \\
& K^{ \pm} p \rightarrow p K^{ \pm} \\
& \pi^{ \pm} p \rightarrow p \rho^{ \pm} \\
& \pi^{ \pm} p \rightarrow \pi^{+} \Delta^{ \pm} \\
& \pi^{ \pm} p \rightarrow K^{+} \Sigma^{ \pm} \\
& \pi^{-} p \rightarrow \Lambda^{0} K^{0}, \Sigma^{0} K^{0} \\
& p^{ \pm} p \rightarrow p p^{ \pm} .
\end{aligned}
$$

New Perspectives on QCD Phenomena from AdS/CFT

- AdS/CFT: Duality between string theory in Anti-de Sitter Space and Conformal Field Theory
- New Way to Implement Conformal Symmetry
- Holographic Model: Conformal Symmetry at Short Distances, Confinement at large distances
- Remarkable predictions for hadronic spectra, wavefunctions, interactions
- AdS/CFT provides novel insights into the quark structure of hadrons

Landau Congress Moscow, June 20, 2008

AdS/QCD
123

Stan Brodsky SLAC \& IPPP

Hadron Dynamics at the Amplitude Level

- LFWFS are the universal hadronic amplitudes which underlie structure functions, GPDs, exclusive processes, distribution amplitudes, direct subprocesses, hadronization.
- Relation of spin, momentum, and other distributions to physics of the hadron itself.
- Connections between observables, orbital angular momentum
- Role of FSI and ISIs: Diffractive DIS, Sivers effect

Landau Congress
Moscow, June 20, 2008

AdS/QCD
124

Stan Brodsky SLAC \& IPPP

Deep Inelastic Electron-Proton Scattering

Conventional wisdom:
Final-state interactions of struck quark can be neglected

Landau Congress Moscow, June 20, 2008

AdS/QCD
125

Stan Brodsky SLAC \& IPPP

Landau Congress
Moscow, June 20, 2008

AdS/QCD
126

can interfere

and produce a T-odd effect! (also need $L_{z} \neq 0$)

Hermes coll., A. Airapetian et al., Phys. Rev. Lett. 94 (2005) 012002.

Sivers asymmetry from HERMES

Landau Congress
Moscow, June 20, 2008

AdS/QCD
127

- First evidence for non-zero Sivers function!
- \Rightarrow presence of non-zero quark orbital angular momentum!
- Positive for π^{+}... Consistent with zero for π^{-}...

Gamberg: Hermes data compatible with BHS model

Schmidt, Lu: Hermes charge pattern follow quark contributions to anomalous moment

Stan Brodsky SLAC \& IPPP

Final-State Interactions Produce

PseudoT-Odd (Sívers Effect)

- Leading-Twist Bjorken Scaling!
$\mathbf{i} \vec{S} \cdot \vec{p}_{j e t} \times \vec{q}$
- Requires nonzero orbital angular momentum of quark
- Arises from the interference of Final-State QCD Coulomb phases in S^{-}and P - waves; Wilson line effect; gauge independent
- Relate to the quark contribution to the target proton anomalous magnetic moment and final-state QCD phases
- QCD phase at soft scale!
final state interaction
spectator
system
$11-2001$
$8624 A 06$
- New window to QCD coupling and running gluon mass in the IR
- QED S and P Coulomb phases infinite -- difference of phases finite!

Landau Congress Moscow, June 20, 2008

AdS/QCD
128

Stan Brodsky SLAC \& IPPP

Remarkable observation at HERA

Fraction r of events with a large rapidity gap, $\eta_{\max }<1.5$, as a function of Q_{DA}^{2} for two ranges of x_{DA}. No acceptance corrections have been applied.
M. Derrick et al. [ZEUS Collaboration], Phys. Lett. B 315, 481 (1993).

Landau Congress

Moscow, June 20, 2008

AdS/QCD
129

Stan Brodsky SLAC \& IPPP

Hoyer, Marchal, Peigne, Sannino, sjb

QCD Mechanism for Rapidity Gaps

Reproduces lab-frame color dipole approach

Landau Congress
Moscow, June 20, 2008

AdS/QCD 130

Stan Brodsky SLAC \& IPPP

Final State Interactions in QCD

Feynman Gauge
Light-Cone Gauge
Result is Gauge Independent

Landau Congress
Moscow, June 20, 2008

AdS/QCD
131

Stan Brodsky SLAC \& IPPP

Some Applications of Light-Front Wavefunctions

- Exact formulae for form factors, quark and gluon distributions; vanishing anomalous gravitational moment; edm connection to anm
- Deeply Virtual Compton Scattering, generalized parton distributions, angular momentum sum rules
- Exclusive weak decay amplitudes
- Single spin asymmetries: Role of ISI and FSI
- Factorization theorems, DGLAP, BFKL, ERBL Evolution
- Quark interchange amplitude
- Relation of spin, momentum, and other distributions to physics of the hadron itself.

Landau Congress
Moscow, June 20, 2008

AdS/QCD
132

Stan Brodsky SLAC \& IPPP

Space-time picture of DVCS

$$
\sigma=\frac{1}{2} x^{-} P^{+}
$$

$$
x^{+}=\mathbf{x}_{\perp}=0
$$

The position of the struck quark differs by x^{-}in the two wave functions
Measure x^{-}distribution from DVCS:
Take Fourier transform of skewness, $\xi=\frac{Q^{2}}{2 p . q}$ the longitudinal momentum transfer

S. J. Brodsky ${ }^{a}$, D. Chakrabarti ${ }^{b}$, A. Harindranath ${ }^{c}$, A. Mukherjee ${ }^{d}$, J. P. Vary ${ }^{e, a, f}$

Landau Congress
Moscow, June 20, 2008

AdS/QCD
133

Stan Brodsky SLAC \& IPPP
S. J. Brodsky ${ }^{a}$, D. Chakrabarti ${ }^{b}$, A. Harindranath ${ }^{c}$, A. Mukherjee ${ }^{d}$, J. P. Vary ${ }^{e, a, f}$

Hadron Optics
$A\left(\sigma, \vec{b}_{\perp}\right)=\frac{1}{2 \pi} \int d \xi e^{i \frac{1}{\xi} \xi \sigma} \widetilde{A}\left(\xi, \vec{b}_{\perp}\right)$

$$
\sigma=\frac{1}{2} x^{-} P^{+} \quad \xi=\frac{Q^{2}}{2 p \cdot q}
$$

The Fourier Spectrum of the DVCS amplitude in σ space for different fixed values of $\left|b_{\perp}\right|$. GeV units

Landau Congress Moscow, June 20, 2008

AdS/QCD
134

Stan Brodsky SLAC \& IPPP

Boost Invariant 3+1 Light-Front Wave Equations
$J=0,1,1 / 2,3 / 2$ plus L Integrable!

Hadron Spectra, Wavefunctions, Dynamics

Landau Congress
Moscow, June 20, 2008

AdS/QCD
135

Stan Brodsky SLAC \& IPPP

AdS/CFT and Hadronic Physics on the Light Front

Lev Davidovich Landau

Stan Brodsky SLAC/IPPP

Landau Memorial Meeting Moscow fune 20, 2008

Light-Front Holography and AdS/QCD Correspondence.

Stanley J. Brodsky, Guy F. de Teramond . SLAC-PUB-13220, Apr 2008. 14pp.
e-Print: arXiv:0804.3562 [hep-ph]
Light-Front Dynamics and AdS/QCD Correspondence: Gravitational Form Factors of Composite Hadrons.
Stanley J. Brodsky (SLAC) , Guy F. de Teramond (Ecole Polytechnique, CPHT \& Costa Rica U.) . SLAC-PUB-13192, Apr 2008. 12pp. e-Print: arXiv:0804.0452 [hep-ph]

AdS/CFT and Light-Front QCD.
Stanley J. Brodsky, Guy F. de Teramond . SLAC-PUB-13107, Feb 2008. 38pp.
Invited talk at International School of Subnuclear Physics: 45th Course: Searching for the "Totally Unexpected" in the LHC Era, Erice, Sicily, Italy, 29 Aug - 7 Sep 2007.
e-Print: arXiv:0802.0514 [hep-ph]
AdS/CFT and Exclusive Processes in QCD.
Stanley J. Brodsky, Guy F. de Teramond . SLAC-PUB-12804, Sep 2007. 29pp. Temporary entry
e-Print: arXiv:0709.2072 [hep-ph]
Light-Front Dynamics and AdS/QCD Correspondence: The Pion Form Factor in the Space- and TimeLike Regions.
Stanley J. Brodsky (SLAC) , Guy F. de Teramond (Costa Rica U. \& SLAC) . SLAC-PUB-12554, SLAC-PUB-12544, Jul 2007. 20pp.
Published in Phys.Rev.D77:056007,2008.
e-Print: arXiv:0707.3859 [hep-ph]

Landau Congress
Moscow, June 20, 2008

AdS/QCD
137

Stan Brodsky SLAC \& IPPP

