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introduction

The experimental discovery of Integer Quantum Hall Effect (IQHE)
by v.Klitzing (1980)and Fractional Quantum Hall Effect (FQHE)
by Tsui,Stormer and Gossard (1982) was one of the outstanding
achievements in condensed matter physics of the last century. The
qualitative physical explanation of IQHE was given soon after
experimental discovery but the theory of FQHE is far from being
complete. In pioneer works of Laughlin (1981,1983) the variational
function for some odd Ll fillings was suggested. He put forward the
idea of the excitations with the fractional electron charge.
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other fractions

The other fractions existence was explained by the construction of
the daughter states (Haldane 1983, Laughlin 1984, B.Halperin
1984). The most successful phenomenological description was
given by Jains (1989-1990) model of ”composite” fermions giving
the majority of the observed fractions. According to Jains model
2d electrons in the perpendicular magnetic field are ”dressed” by 2
flux quanta of magnetic field opposite to the external one. The
inclusion of this additional field in a formalized theory gives
Chern-Simons Hamiltonian (B.Halpern, P.Lee, N.Read, 1993)
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plateau

However this model introduces artificial 6-fermionic model and
there are experimental fractions which can not be found by this
model. QHE consists in the existence of the plateau of Hall
conductivity near some special values of the electron density. At
integer fillings of Ll we have large energy gaps in high magnetic
field with the macroscopic degeneracy of the levels. That results in
the electron motion along lines where the impurity potential is
constant. Those lines are closed near the minima or maxima of
impurity potential and therefore the corresponding electron states
have not macroscopic current.
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plateau 2

If the electron chemical potential is somewhere between Ll the
density is changed due to localized states without changing of the
Hall current defined by the delocalized states near the percolation
threshold. We see that for IQHE it is important the existence of
large energy gaps and localized states developed in the weak
impurity potential due to the degeneracy of the one particle states.
The experimental data near the fractional fillings are quite close to
those at integer fillings. Therefore the general physical picture
must be close for IQHE and FQHE.
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picture
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extension

I shall show how to remove the restrictions of the Jains model and
to obtain a more general and more simple model with the standard
Coulomb interaction. The main conception is associated with the
possibility to have topological textures in 2d electron system. The
vortices are wide spread in condensed matter physics. The simple
and general definition can be done using the canonical
transformation for the field operators of second quantization
ψ(r) = e iα(r)χ(r) ψ+ = χ+e−iα

with ∇α having vortex like singularities.
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zeta

curl∇α = 2πK
∑

n,n′ δ(r − rnn′) where rnn′ = n~τ1 + n′~τ2 form a
lattice, K is some integer. I assume full spin polarization and omit
spin indices. It is evident that both ψ,ψ+ and χ,χ+ satisfy Fermi
commutation relations. The problem to find ∇α and e iα can be
solved by Weierstrass ζ function.
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zeta2

It is a convergent series

ζ = 1
z +

∑
Tnn′ 6=0

(
1

z−Tnn′
+ 1

Tnn′
+ z

T 2
nn′

)
where z = x + iy , Tnn′ = nτ1 + n′τ2 and τ1, τ2 are the minimal
complex periods of the vortex lattice.
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real

In the real representation ∇α = K (Reζ, Imζ) and
α = K

∫ r
r0

(Reζdx + Imζdy)

The phase factor e iα will be simple function on 2d plain for any
integer K . The substitution of the above expressions into the
standard hamiltonian of the interacting electrons in magnetic field
gives the new hamiltonian
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hamiltonian

H = ~2

2m

∫
χ+

(
−i∇+∇α− e

c~A
)2
χd2r +

1
2

∫
U(r − r′)χ+(r)|chi+(r′)χ(r′)χ(r)d2rd2r ′

where U(r) is Coulomb interaction, A(r) is the vector potential of
the external uniform magnetic field. I take the gauge linear in
coordinates. therefore A(r + ~τ) = A(r) + A(~τ)
ζ-function has the same property ζ(z + τ) = ζ(z) + δ(τ).
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effective potential

If we introduce ”effective ” vector potential Aeff = A− c~
e ∇α any

translation along the periods of the vortex lattice makes a change
in the effective vector-potential which can be removed by the
change of the gauge. Therefore the obtained hamiltonian is
invariant under magnetic translations
Tm(~τ)χ(r) = χ(r + ~τ) exp

(
ie
c~Aeff (~τ)r

)
for any real period of the

vortex lattice.
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flux

It is easy to connect the effective vector-potential with the
”effective”
magnetic flux through the unit cell of the vortex lattice
Φ =

∮
Aeff dR = Aeff (~τ1)~τ2 − Aeff (~τ2)~τ1 = B0~τ1 × ~τ2 + KΦ0

where the flux quantum Φ0 = 2π|e|
c~ , B0 is the external magnetic

field normal to 2d plain.
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representation

Magnetic translations are non commutative and give ray
representations of ordinary translation group. The simple finite
representation and simple spectral properties are possible only for
the rational number of the flux quanta per the unit sell (E.Brown,
1964),(J.Zak, 1964)
Φ = l

N Φ0 = B0s + KΦ0

l ,N are integers, s is the area of the unit cell.Thus the situation is
isomorphic to the case of the magnetic field with the rational flux
number per the unit cell plus the periodic magnetic field with the
zero flux.
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strong field

Consider the case of the weak interaction when kinetic one particle
hamiltonian is the main term. That corresponds to the large
magnetic field when Coulomb interaction grows as

√
B0 and the

kinetic part grows as B0 and is possible to use a perturbation
theory. Any magnetic translation gives the state with the same
energy and these translations does not commute. As a
consequence one has highly degenerate spectrum. In order to find
the one particle states one must put some boundary conditions.
The simplest are generated by magnetic translations
Tm(L)χ(r) = χ(r)
here L = L1,L2which define the sample size,like Born-v.Karman
conditions.
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groundstate

The simplest realization of the finite representation is the sample
of N × N unit cells and the general case M1N ×M2N unit cells. It
must be M1M2N

2 states of the same energy as the consequence of
the magnetic translations non commutativity. The ground state
energy according to the perturbation theory is
E0 = N2M1M2ε0 + 1

2

∫
U(r − r′) < χ+(r)χ+(r′)χ(r′)χ(r)d2rd2r ′

where ε0 is the ground state energy for the kinetic part and the
angle brackets denote the average over the filled states. If one
adds more electrons they go to the state with the larger
energy.The gaps must be found numerically.
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electron densities

The set of the observed electron densities depend on the value of
the gaps, temperatures, and sample purity. To take into account
these numerous factors is a difficult task. But it is easy to solve
the opposite problem- to find the vortex lattices corresponding to
the observed densities using the expression for the electron density
ne = B0

Φ0

N
l−NK .

The observed fractions are given by the following tables.

S. V. Iordanskiy Fractional Quantum Hall Effect and vortex lattices



lattices

K = −2, l = 1

q 1 2 3 -5 -2 -3 -4 4 ∞
ν 1

3
2
5

3
7

5
9

2
3

3
5

4
7

4
9

1
2

That fractions correspond to the celebrated Jain’s rule. Especially
must be noted the half filling of the Ll corresponding to limN →∞
and the effective flux equal to zero. In this case we have an
ordinary group of the translations with a normal band structure.
This state can be achieved by the increasing of electron density
N > 0 as well as by decreasing N < 0. This circumstance must
create the symmetry vanishing of the gap for electron and holes.
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end

Other observed fractions correspond to the table

K = −1, l = 1

q -4 4 2

ν 4
3

4
5

2
3

where one have the double of the fraction 2/3, and also

K = −1, l = 2

q -7 -5 5 2

ν 7
5

5
3

5
7

1
2

here one have not observed double of the fraction 1/2 with the
gap. The exclusion of the doubles requires extensive numerical
calculations.
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end2

All observed fractions correspond to vortex lattices with 1 or 2 flux
quanta per unit cell. The one particle ground state degeneracy for
the periodic magnetic field was found initially in the work of
B.Dubrovin and P.Novikov(1980).

S. V. Iordanskiy Fractional Quantum Hall Effect and vortex lattices


