

Open Problems in Hadron Spectroscopy

Luciano Maiani

Universita' di Roma "La Sapienza" and INFN, Sezione di Roma 1

Научно-мемориальная сессия, Центральный дом ученых РАН, 19-20 июня 2008 г.

Landau Memorial Meeting, Moscow, June 19-20, 2008

Hommage to Lev Landau

20-01-2008

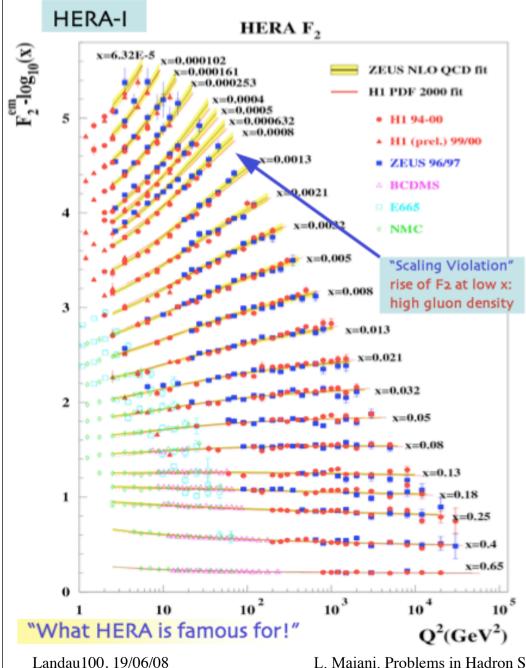
Protagonisti della fisica

scussione. Il fisico Lev Landau (a destra) con Werner Heis

Landau, genio contro Stalin

Pagò col carcere la propria indipendenza. Lo salvarono le ricerche sull'elio superfluido che gli valsero il Nobel. Leggendaria la sua autostima: «Resto solo io», disse quando morì Fermi

di Luciano Majani

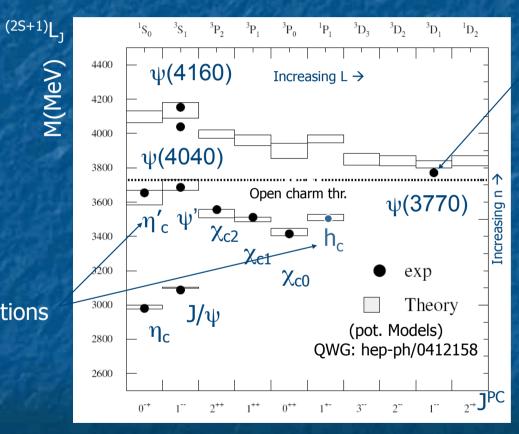

di battaglia intellettuale esaltante.

Nonostante questa fobia, Landau si rive-A Leningrado, Landau e due suoi amici, lerà un grande maestro. Presuntuoso, ceruando un mio giovane collabo- Ivanenkoe Gamov (che poi fiaggirà negli Sta- to, Come testimonia la sua personale graratore ha visto la foto sulla co- ti Uniti, vincerà il Nobele diventerà il princi- duatoria, articolata su un sistema di cinque pertina del libro-che mi era sta- pale teorico del Big Bang), formeranno un punti, con la quale classificava i fisici teorito mandato per la recensione, terzetto-diffsici di punta chiamato «I tre mo- ci di tutto il mondo. Anche Fermi ne aveva ha spalancato gli occhi e ha schemerio semene opcillanti tra grande in- una e la cosa curiosa è che le due graduato-

Landau100. 19/06/08

Summary

- 1. Introduction
- 2. Light scalar mesons resolved
- 3. QCD strings
- 4. New Charmonium states
- 5. Thresholds, cusps and new states
- 6. Two X states?
- 7. A charged charmonium?
- 8. Outlook


1. Introduction

- Thirty years after its discovery, we still do not fully control QCD.
- Only in few cases, we can produce reliable theoretical predictions. Even in these cases we need to rely upon phenomenological parameters. Ab initio calculations (lattice) still have many limitations.
- Scaling violations in DIS, input: the structure function at some Q_0^2

Large quark mass makes it possible to use potential theory for c-cbar states. Input: the parameters of the potential. Remarkable accuracy has been achieved

slide from R. Faccini, LP07

Charmonium: state of the art

same J^{PC} as J/ ψ but mostly D wave !

Recent acquisitions

Basically all states below the open charm threshold are observed and explained

The (unexplained) success of the constituent quark model

- · A. Sakharov, Zeldovich
- H. Lipkin
- A. De Rujula, H. Georgi and S. Glashow
- Quark constituent masses and spin-spin interaction:

$$H = \sum_i m_i + \sum_{i < j} \kappa_{ij} \left(\sigma_i \cdot \sigma_j \right) \delta^3(ec{r}_{ij})$$
 $\kappa_{ij} \simeq rac{v}{m_i m_j}$

- Hyperfine interaction explains, among other things, the Λ - Σ^0 mass difference (they have the same flavor composition) as due to the hyperfine interaction
- Baryons with one heavy and two light quarks can be described by a light diquark+the heavy quark

contribution of the hyperfine interaction energies is removed. For the two cases of spin-zero [8] S=0 and spin-one S=1 diquarks,

$$M(N) - \tilde{M}(\rho) = M(\Lambda) - \tilde{M}(K^*) = M(\Lambda_c) - \tilde{M}(D^*) = M(\Lambda_b) - \tilde{M}(B^*)$$

323 MeV \approx 321 MeV \approx 312 MeV \approx 310 MeV

• M. Karliner, H. Lipkin, hep-ph/0611306v3

$$\begin{array}{lll} \tilde{M}(\Delta) - \tilde{M}(\rho) &=& \tilde{M}(\Sigma) - \tilde{M}(K^{\star}) \\ 517.56 \ {\rm MeV} &\approx & 526.43 \ {\rm MeV} \\ \end{array} \approx \begin{array}{ll} \tilde{M}(\Sigma_c) - \tilde{M}(D^{\star}) &=& \tilde{M}(\Sigma_b) - \tilde{M}(B^{\star}) \\ \approx & 512.45 \ {\rm MeV} \end{array}$$

Tilde= spin average= eliminates spin- spin interaction between the diquark and the "valence quark"

2. Light Scalar Mesons Resolved

Mass and width of the lowest resonance in QCD

I. Caprini

National Institute of Physics and Nuclear Engineering, Bucharest, R-077125 Romania

G. Colangelo and H. Leutwyler Institute for Theoretical Physics, University of Bern, Sidlerstr. 5, CH-3012 Bern, Switzerland

arXiv:hep-ph/0512364v2, 7 Apr 2006

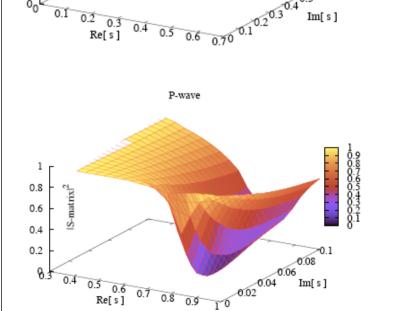
Dispersion equation analysis of π π scattering in S-wave indicate a broad resonance around 500 MeV, σ , and a narrow one around 980, f_0 .

$$m_0 = (441 \pm 4) - i (272 \pm 6) \text{ MeV}$$

| MeV | MeV

Re s and Im s are in units of m_{π}^2

FIG. 2: Domain of validity of the Roy equations.


a similar analysis proves the existence of kappa

The $K_0^*(800)$ scalar resonance from Roy-Steiner representations of πK scattering

arXiv:hep-ph/0607133v2 25 Aug 2006

S. Descotes-Genon^a and B. Moussallam^b

$$M_{\kappa} = 658 \pm 13 \text{ MeV}$$
, $\Gamma_{\kappa} = 557 \pm 24 \text{ MeV}$

S-wave

E791

BES II

	$M_{\kappa} \text{ (MeV)}$	$\Gamma_{\kappa} \text{ (MeV)}$
This work	658 ± 13	557 ± 24
Zhou, Zheng [16]	694 ± 53	606 ± 89
Jamin et al. [18]	708	610
Aitala et al. [7]	$721\pm19\pm43$	$584 \pm 43 \pm 87$
Pelaez [19]	750 ± 18	452 ± 22
Bugg 9	750 ⁺³⁰ 750 ⁺³⁰	684 ± 120
Ablikim et al. 20	$841 \pm 23^{+64}_{-55}$	$618 \pm 52^{+55}_{-87}$
Ishida et al. [14]	877 ⁺⁶⁵ -30	668 ⁺²³⁵ ₋₁₁₀

Landau100. 19/06/08

0.8

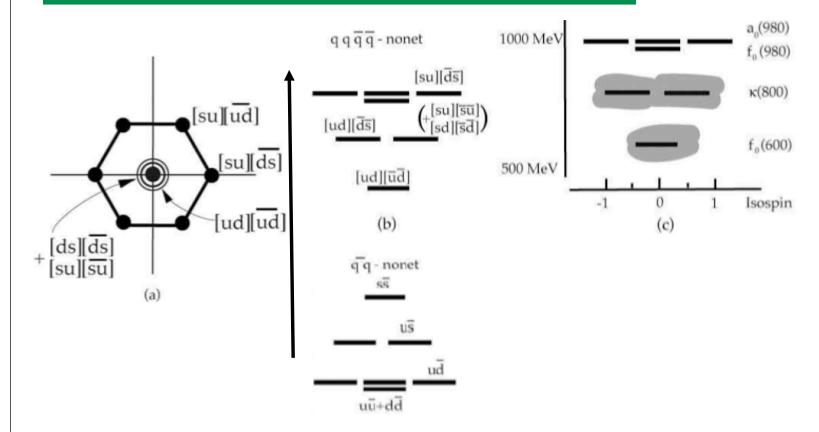
0.4

L. Maiani. Problems in Hadron Spectroscopy

8

a complete nonet

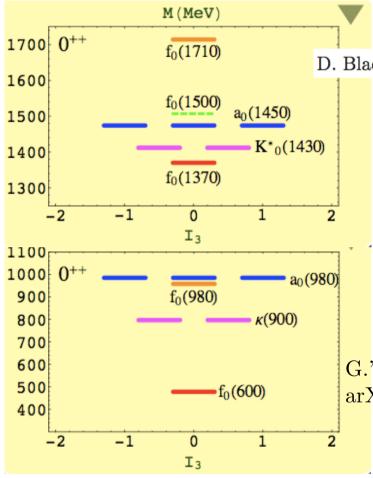
- $\sigma(450, I=0)$, $\varkappa(660, I=1/2)$, $f_0(980, I=0)$ and $a_0(980, I=1)$) fill neatly an entire nonet, but masses are in reverse order with respect to a q-qbar nonet
- pattern at complete variance with the very successful constituent quark model
- Candidate for a Cryptoexotic multiplet diquarks(antidiquarks) are antisymmetric in:
 - color (diquark = $\mathbf{\bar{3}}_{color}$ antidiquark = $\mathbf{3}_{color}$)
 - spin (diquark and antidiquark have spin = 0)
 - flavor (diquark is $\mathbf{ar{3}}_{flavor}$ antidiquark is $\mathbf{3}_{flavor}$)
- earlier proposal by R. Jaffe (1977) and by R. Jaffe &F. Wilczeck, more recently reconsidered by our group.


 L.Maiani, F. Piccinini, A. Polosa, V. Riquer, PRL 93(2004) 212002

$$\kappa = [su][\bar{u}\bar{d}], [sd][\bar{u}\bar{d}]$$

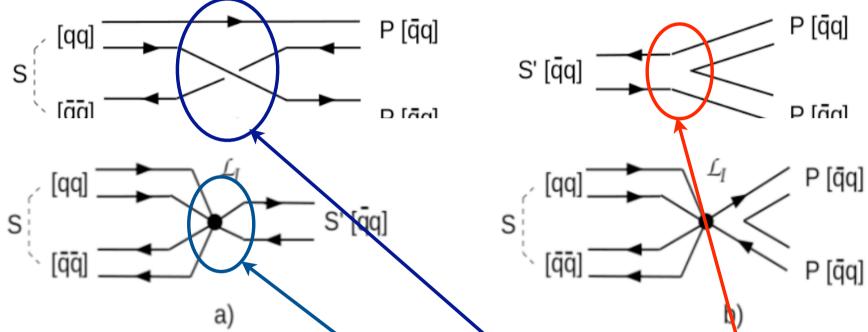
$$\sigma = [ud][\bar{u}\bar{d}]$$

$$f_0/(a_0)^0 = \frac{[su][\bar{s}\bar{u}] \pm [sd][\bar{s}\bar{d}]}{\sqrt{2}}$$


Quantum numbers and mass spectrum

The reversed mass spectrum reveals the 4-quark composition of the lightest scalar mesons

The fully antisymmetric (anti) diquark structure agrees with the absence of truly exotic states, i.e. I=2, $\pi\pi$ resonances.


P-wave q-qbar scalar mesons: where are they?

- Identified with the decimet of a₀(1450)
- D. Black, A. Fariborz, J. Schechter, Phys. Rev. **D** 61, 074001 (2000)
 - with a possible glueball:
 - C. Amsler and F. Close, Phys. Rev. **D** 53, 295 (1996)
 - peculiar features:
 - distorted spectrum, attributed by
 Black et al. to a (large) mixing with
 the lowest tetraquark multiplet
 - decay pattern rather fuzzy, with tetraquark features
 - G.'t-Hooft, G. Isidori, L. Maiani, A. Polosa, V. Riquer, arXiv:0801.228 and Phys. Letters B, 2008.
 - both features can be attributed to instanton effects, which also produce a better picture of the lowest scalar meson decays.

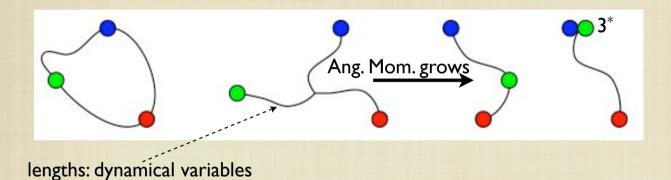
Instanton induced decays and mixing

Leading quark diagrams for the decays into two pseudoscalar mesons: (a) tetraquark, (b) $q\bar{q}$ scalar mesons

The two main effects of the instanton lagrangian in the scalar sector

- (a) the tetraquark- $q\bar{q}$ mixing,
- (b) the Zweig-rule violating $S \rightarrow PP$ amplitude

$$\mathcal{L}_{ ext{eff,all}} = ext{Tr}\left(S\mathcal{M}_S^2S
ight) + ext{Tr}\left(S'\mathcal{M}_{S'}^2S'
ight) + \gamma ext{Tr}\left(SS'
ight) + c_fO_f(S) + c_fO_1(S')$$

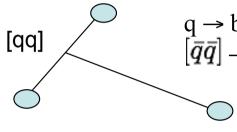

Two parameter fit to lightest scalar meson decays

G.'t-Hooft, G. Isidori, L. Maiani, A. Polosa, V. Riquer, arXiv:0801.228 and Phys. Letters B, 2008.

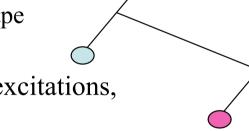
Processes	$\mathcal{A}_{ ext{expt}}$	$oxed{\mathcal{A}_{ ext{th}}([qq][ar{q}ar{q}])} oxed{\mathcal{A}_{ ext{th}}(qar{q})}$		
		best fit	with inst.	no inst.
$\sigma o \pi^+\pi^-$	3.22 ± 0.04	1.6	input	input
$\kappa^+ o K^0\pi^+$	5.2 ± 0.1	3.3	6.0	5.5
$f_0 o \pi^+\pi^-$	1.4 ± 0.6	1.6	input	[0-1.6]
$f_0 ightarrow K^+K^-$	3.8 ± 1.1	3.5	6.4	6.4
$a_0 o\pi^0\eta$	2.8 ± 0.1	2.7	12.4	11.8
$a_0 o K^+K^-$	2.16 ± 0.04	2.2	4.1	3.7

3. STRINGS & HADRONS

G. `t Hooft hep-th/0408148

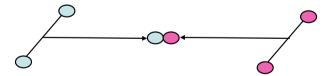


The Regge Trajectories for mesons and baryons seem to have the same slope.


The classically stable config. has a single open string with two quarks at the end points and one bouncing between them.

Diquark [qq] in color = 3bar, spin=0, SU3 flavour = 3bar makes a simple unit to form color singlets (Jaffe..more recently Jaffe&Wilcezck, Karliner & Lipkin for penta-quark)

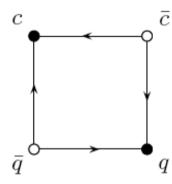
Diquark needs to combine with other colored objects



 $q \rightarrow$ baryon (e.g. Λ), Y-shape $[\bar{q}\bar{q}] \rightarrow$ scalar meson, H-shape

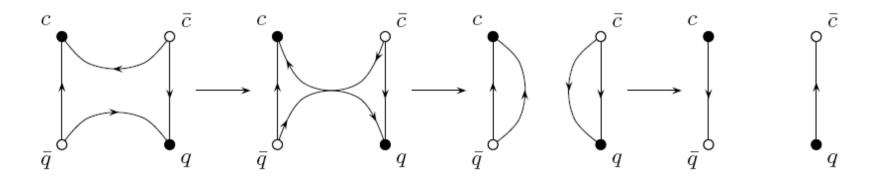
radial and orbital excitations, many states

string topology is related to Baryon-antiBaryon: if you stretch the string, $[qq][\bar{q}\bar{q}] \to B\bar{B}$


Meson-meson molecules have a different string topology:

- are they bound?
- very few states

Landau100. 19/06/08


L. Maiani. Problems in Hadron Spectroscopy

H-shaped diquarks are not the only possibility: tetraquarks proposed (S. S. Gershtein, A.K. Likhoded and G.P. Pronko) to explain 4-quark charmonia

- c-cbar are in color octet (favoured in B decay?)
- radial and orbital excitations are possible

Mechanism for strong decay of ___- mesons is very different from that of H mesons

4. New particles in the charmonium region: X&Y

- Mesons with hidden charm are being found by BELLE (at KEK) and BaBar (SLAC), which do not fit the Charmonium picture
- main processes are:
 - B non leptonic decays:

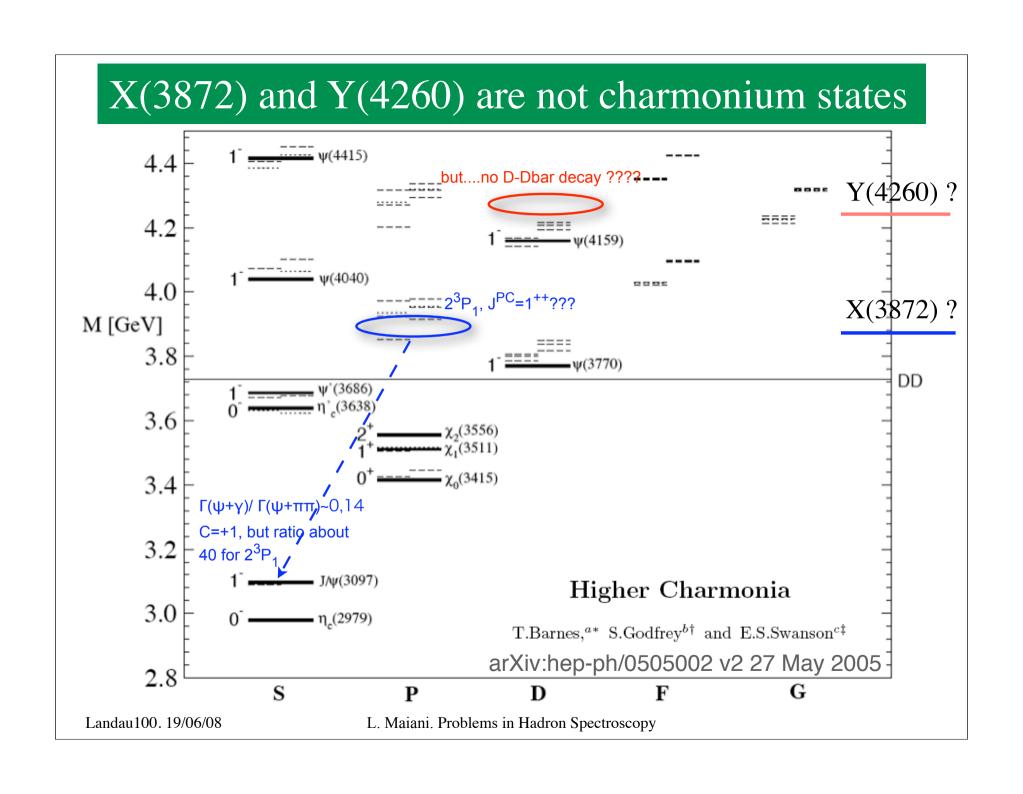
$$B^{\pm} \to K^{\pm} + X^{0}; \ B^{0} \to K^{0} + X^{0}$$
 $X^{0} \to \psi(nS) + \pi's, \text{ or } D^{(*)}D^{(*)}$

$$B^{\pm} \to K^0 + X^{\pm}; \ B^0 \to K^{\pm} + X^{\mp}$$
 $X^+ \to \psi(nS) + \pi^+ + \pi^0, \text{ or } D^{(*)}D^{(*)}$

not seen (yet?)

seen

– Initial State Radiation:


$$e^+e^- \to \gamma \text{(initial state)} + Y$$

 $Y \to \psi(nS) + \pi's, \text{ or } D^{(*)}D^{(*)}$

seen

since Y originates from a virtual photon, it has JPC=1-.

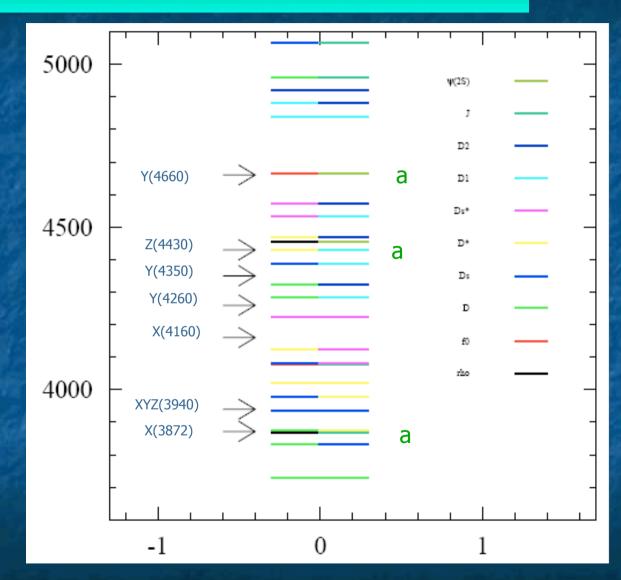
$$-e^{+}e^{-} \rightarrow \psi(1S) + (D^{(*)}D^{(*)})_{M}$$
 (only C=+1 are produced)

17

Proposed interpretations

•
$$X(3872) =$$

- D-D* molecule: $M(X) - M(D^{*0}\bar{D}^0) = +0.6 \text{ MeV}$
- diquark-antidiquark bound state: $[(cq)(\bar{c}q)]_{S-wave}, J^{PC} = 1^{++}; (q = u, d)$
- Y(4260) =
 - Hybrid state: $(c \bar{c} g)$
 - diquark-antidiquark bound state: $[(cs) (\bar{c}\bar{s})]_{P-wave}, J^{PC} = 1^{--}.$

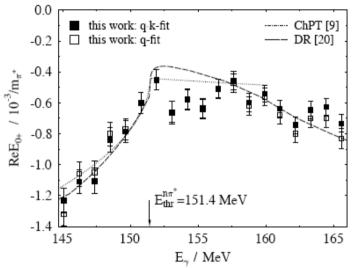

- molecular state ($\chi_c + \omega$)
- baryonium: Λ^+ - Λ^-

- •Close and Page PL B 578 (2004) 119;
- Tornqvist PLB 590 (2004) 209;
- Swanson, PL B588 (2004) 189.
- - •Maiani, Piccinini, Polosa and Riquer, PR D 71 (2005) 014028
 - •Close and Page, PL B 628 (2005) 215;
 - Kou and Pene, PL B 631, 164 (2005)
- - •Maiani, Piccinini, Polosa and Riquer, PR D 72 (2005) 031502
- Yuan, Wang and Mo, PL B 634 (2006) 399
 - Qiao, PL B 639 (2006) 263
- hybrid X(3872) excluded by large isospin violation: decays in $\psi \rho$ and $\psi \omega$;

5. Thresholds, cusps and new states

Molecular models and threshold effects require vicinity to threshold

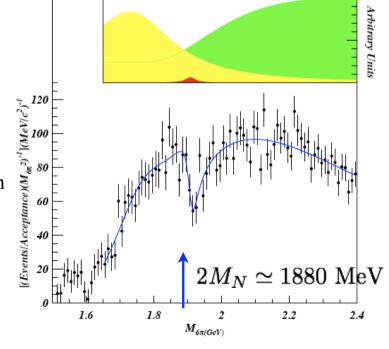
Is this the case?

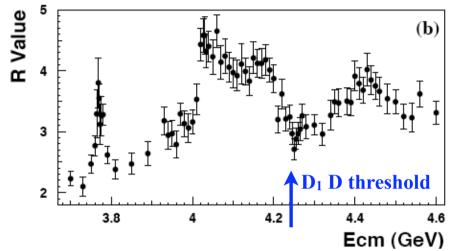


Cusps effects

Jonathan L. Rosner

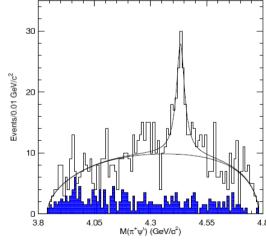
Enrico Fermi Institute and Department of Physics, University of Chicago 5640 South Ellis Avenue, Chicago, IL 60637


• Dips are observed in various reactions as the effect of the opening of an S-wave threshold in another channel


 $\gamma p \to p \pi^0$ in the proximity of the $n \pi^+$ threshold A. Schmidt et al., Phys. Rev. Lett. 87 (2001), 232501

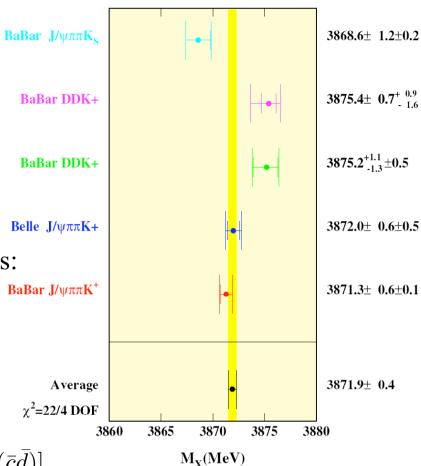
Spectrum of diffractively produced 3π $+3\pi$ –, together with results of a fit with two resonances and continuum.

The inset shows the relative fraction of each amplitude without interference.



Cusp effects (cont'd)

The lightest established candidate for D_1 has a mass of about 2.42 GeV/c^2 , corresponding to a threshold of 4.285 GeV. It is this threshold that we associate with the dip in R between 4.19 and 4.25 GeV.

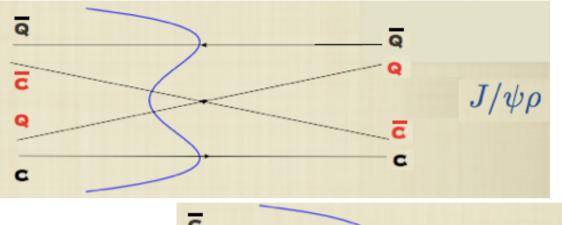

For comparison: $Z^+(4430) \rightarrow \pi^+ \psi(2S)$

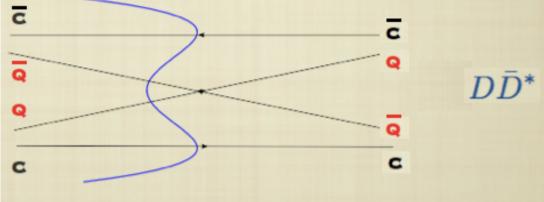
Landau100. 19/06/08

6. Two X states?

arXiv:0707.3354 [hep-ph] 23 Jul 2007

Poor agreement among mass measurements:


 $X \rightarrow J/\psi \pi \pi$ and $X \rightarrow DD^{(*)}$ differ by $\sim 4\sigma$


two X states @ 3872 and 3876?

- simplest interpretation: $[(cu)(\bar{c}\bar{u})]$ and $[(cd)(\bar{c}\bar{d})]$
- molecule interpretation disfavored

Babar confirms two different masses with 4.5 σ

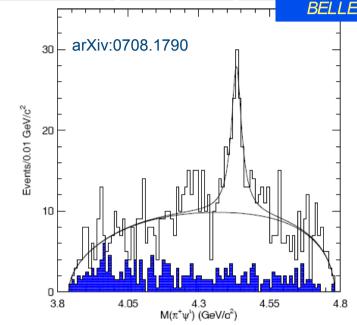
are production and decay consistent? $J/\psi\pi\pi$ must be suppressed w.r.t. D^*D

Tunneling of c quark to flip from one equilibrium position to the other could be much suppressed with respect to the tunneling of the light quark Q:

$$\Gamma(X_u \to D^0 \bar{D}^0 \pi^0) >> \Gamma(X_u \to J/\psi \pi^+ \pi^-) \simeq$$

$$\simeq \Gamma(X_d \to J/\psi \pi^+ \pi^-) >> \Gamma(X_d \to D^0 \bar{D}^0 \pi^0)$$

The first charged state: Z(4430)!


 $B^{\pm} \rightarrow Z^{\pm}K_{s}$ or $B^{0} \rightarrow Z^{i}K^{\pm}$ $Z^{\pm} \rightarrow \psi(2S)\pi^{\pm}$

Total significance: 7.3s

 $M = (4433 \pm 4) \text{ MeV}$ $\Gamma = (44^{+17}_{-13}) \text{ MeV}$

Too narrow to be a reflection

BF(B \to KZ)xBF(Z \to ψ (2S) π)=(4.1 \pm 1.0 \pm 1.3) 10⁻⁵

Subset	Signal events	Mass	Width	signif.	constr. yield
		(GeV)	(GeV)	(σ)	$(\Gamma=0.044 GeV)$
$\psi' \to \pi^+\pi^- J/\psi$	52.9 ± 15.1	4.435 ± 0.004	$0.026^{+0.013}_{-0.008}$	5.5	67.3 ± 14.9
$\psi' \rightarrow \ell^+ \ell^-$	104.8 ± 34.5	4.435 ± 0.010	$0.097^{+0.041}_{-0.031}$	5.6	60.1 ± 13.8
$J/\psi(\psi') \rightarrow e^+e^-$	45.4 ± 16.6	4.430 ± 0.010	$0.052^{+0.026}_{-0.020}$	4.1	40.9 ± 11.9
$J/\psi(\psi') \rightarrow \mu^+\mu^-$	79.4 ± 24.6	4.434 ± 0.004	$0.039^{+0.022}_{-0.013}$	6.1	84.8 ± 17.0
$K^{\pm}\pi^{\mp}\psi'$	106.5 ± 26.6	4.434 ± 0.005	$0.046^{+0.017}_{-0.013}$	6.6	104.7 ± 18.6
$K_S \pi^{\mp} \psi'$	21.0 ± 8.3	4.430 ± 0.009	0.046-fixed	3.0	20.6 ± 8.2
vary K^* veto	238.1 ± 64.2	4.436 ± 0.005	$0.068^{+0.031}_{-0.019}$	7.9	178.4 ± 26.4

Xcheck: separate in subsamples

BF and mass consistent between B[±] and B0 within large errors [in B[±] decays $M = (4430 \pm 9) \text{ MeV} : BF.$

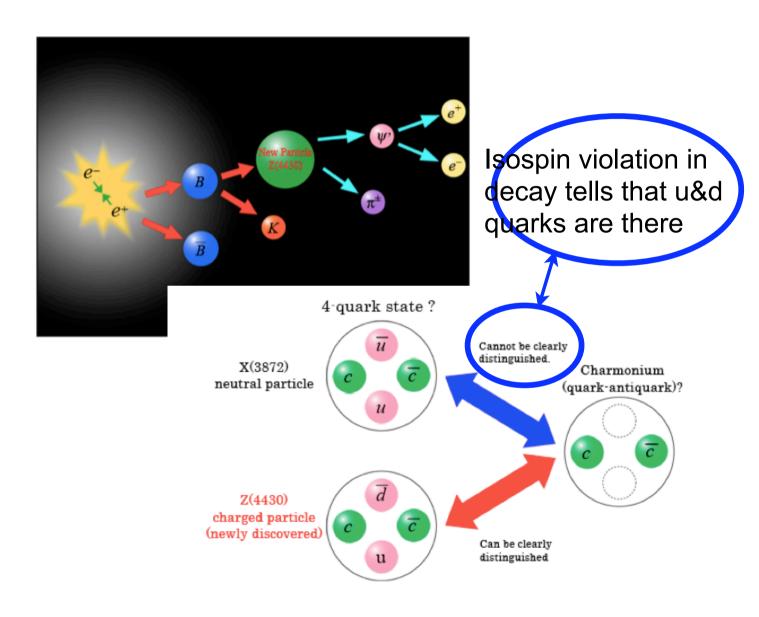
 $BF_0 = 1.0 \pm 0$

R.Faccini, LeptonPhoton Conference 2007

Prior search with no evidence: B \rightarrow X+K with X+ \rightarrow J/ ψ ππ⁰

PRD 71, 031501 (2005)

Proposed interpretations


• Z⁺(4433), BELLE Collaboration

arXiv:0708.1790v1 [hep-ex] 14 Aug 2007

- charged tetraquark: $[cu][\bar{c}\bar{d}]$
 - •L. Maiani, A.D. Polosa and V. Riquer, hep-ph: 0708.3997;
 - S. S. Gershtein, A.K. Likhoded and G.P. Pronko, hep-ph 0709.2058
 - K.m. Cheung, W.Y. Keung and T. C. Yuan, hep-ph:0709.1312 [hep-ph] (propose similar states with b quark)
- − Threshold enhancement in D₁-D*
- J.L. Rosner, hep-ph:0708.3496;
- C. Meng and K.T. Chao, hep-ph:0708.4222;
- D.V. Bugg, hep=ph:0709.1254;

– Baryonium: $\Lambda_c^+ \bar{\Sigma}_c^0$

• C.~F.~Qiao, hep-ph:0709.4066

8. Outlook

- A new spectroscopy is being discovered with the new "charmonia";
- this is made possible by the fact that the Standard Charmonium model is so precise: years of efforts to compute precisely the c-cbar spectroscopy produce now their reward;
- The observation of two X states and of the charged charmonium, Z, has given more credibility to the tetraquark interpretation;
- In this case, there must exist neutral states close to Z as well as the Z(1S) around 3890 MeV, with Z(1S) $\rightarrow \pi + \psi(1S)$.
- X and Z states should fall in complete nonets, with masses calculable within the constituent quark model, that works so well for S-wave hadrons;
- Confirmation of Z(4430) is essential!!
- alternative schemes still exist and more data are (badly) needed.

A new generation of machines and detectors are called for Super-B factory ideal. Meanwhile, can FAIR take the challenge? Can Lattice QCD calculations play a role?